Search results for: concrete waste
1809 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality
Procedia PDF Downloads 2851808 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking
Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal
Abstract:
It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam
Procedia PDF Downloads 4241807 Nanotechnology Innovations for the Sustainable Buildings of the Future
Authors: Ayşin Sev, Meltem Ezel
Abstract:
Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed.Keywords: nanomaterial, self-healing concrete, self cleaning sensor, nanosensor, steel, wood, aerogel, flexible solar panel
Procedia PDF Downloads 4561806 Existential and Possessive Constructions in Modern Standard Arabic Two Strategies Reflecting the Ontological (Non-)Autonomy of Located or Possessed Entities
Authors: Fayssal Tayalati
Abstract:
Although languages use very divergent constructional strategies, all existential constructions appear to invariably involve an implicit or explicit locative constituent. This locative constituent either surface as a true locative phrase or are realized as a possessor noun phrase. However, while much research focuses on the supposed underlying syntactic relation of locative and possessive existential constructions, not much is known about possible semantic factors that could govern the choice between these constructions. The main question that we address in this talk concerns the choice between the two related constructions in Modern Standard Arabic (MAS). Although both are used to express the existence of something somewhere, we can distinguish three contexts: First, for some types of entities, only the EL construction is possible (e.g. (1a) ṯammata raǧulun fī l-ḥadīqati vs. (1b) *(kāna) ladā l-ḥadīqati raǧulun). Second, for other types of entities, only the possessive construction is possible (e.g. (2a) ladā ṭ-ṭawilati aklun dāʾiriyyun vs. (2b) *ṯammata šaklun dāʾiriyyun ladā/fī ṭ-ṭawilati). Finally, for still other entities, both constructions can be found (e.g. (3a) ṯammata ḥubbun lā yūṣafu ladā ǧārī li-zawǧati-hi and (3b) ladā ǧārī ḥubbun lā yūṣafu li-zawǧati-hi). The data covering a range of ontologically different entities (concrete objects, events, body parts, dimensions, essential qualities, feelings, etc.) shows that the choice between the existential locative and the possessive constructions is closely linked to the conceptual autonomy of the existential theme with respect to its location or to the whole that it is a part of. The construction with ṯammata is the only possible one to express the existence of a fully autonomous (i.e. nondependent) entity (concrete objects (e.g.1) and abstract objects such as events, especially the ones that Grimshaw called ‘simple events’). The possessive construction with (kāna) ladā is the only one used to express the existence of fully non-autonomous (i.e. fully dependent on a whole) entities (body parts, dimensions (e.g. 2), essential qualities). The two constructions alternate when the existential theme is conceptually dependent but separable of the whole, either because it has an autonomous (independent) existence of the given whole (spare parts of an object), or because it receives a relative autonomy in the speech through a modifier (accidental qualities, feelings (e.g. 3a, 3b), psychological states, among some other kinds of themes). In this case, the modifier expresses an approximate boundary on a scale, and provides relative autonomy to the entity. Finally, we will show that kinship terms (e.g. son), which at first sight may seem to constitute counterexamples to our hypothesis, are nonetheless supported by it. The ontological (non-)autonomy of located or possessed entities is also reflected by morpho-syntactic properties, among them the use and the choice of determiners, pluralisation and the behavior of entities in the context of associative anaphora.Keywords: existence, possession, autonomous entities, non-autonomous entities
Procedia PDF Downloads 3481805 A New Reliability Allocation Method Based on Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming
Procedia PDF Downloads 3411804 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks
Authors: Farnia Nayar Parshi, Mohammad Shariful Islam
Abstract:
Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength
Procedia PDF Downloads 1191803 Adsorption Cooling Using Hybrid Energy Resources
Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux
Abstract:
HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources
Procedia PDF Downloads 3591802 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain
Procedia PDF Downloads 1991801 Examining the Impact of Degrees of Slag Replacement on the Carbonation Process of Slag-Blended Cement
Authors: Geta Bekalu Belayneh, Solmoi Park
Abstract:
This study examines the role of slag in the process of hydration and carbonation of carbonation-cured slag cement. Carbonation-cured slag-blended cement paste samples were prepared with varying slag percentages of 0%, 10%, 30%, and 50%. The curing process lasted for a maximum of 28 days. The findings demonstrated that the carbonation depth increased as the curing period was extended, and a larger slag percentage promoted a more extensive penetration of carbonation. The degree of belite reaction was greatly enhanced in the slag-blended cement, resulting in an increased ability to bind CO₂ in the blended cement. These findings enhance comprehension of the behaviour of blended cement produced through carbonation-curing, facilitating the advancement of more environmentally friendly and long-lasting concrete constructions.Keywords: carbonation curing, blast furnace slag, characterization, Portland cement
Procedia PDF Downloads 691800 SUSTAINEXT–Validating a Zero-Waste: Dynamic, Multivalorization Route Biorefinery for Plant Extracts
Authors: Adriana Diaz Triana, Wolfgang Wimmer, Sebastian Glaser, Rainer Pamminger
Abstract:
SUSTAINEXT is a pioneer initiative in Extremadura, Spain under the EU Biobased industries. SUSTANEXT will scale-up and validate an industrial facility to produce botanical extracts, based on three key pillars. First, the whole valorization of bio-based feedstocks with a zero-waste and zero-emissions ambition. SUSTAINEXT will be deployed with six feedstocks. Three medicinal and aromatic plants (Rosemary, Chamomile, and Lemon verbena) will be locally sourced from disused tobacco fields with installed agri-voltaics; and three underexploited agro-industrial side streams will be further valorized (Olive, artichoke-cardoon, and pomegranate). Second, a dynamic, analytical biorefinery (DYANA) will isolate polyphenol and tri-terpenes from feedstocks in a disruptive and circular way. SUSTAINEXT explores 12 valorization routes (VRs) to extract and purify 46 functional ingredients, of which 13 are new in the market and 12 are newly produced in Europe. Third, the integrated and versatile value chain engages all actors, from feedstocks suppliers to extract users in the industries of food, animal feed, nutraceuticals, cosmetics, chemical performance, soil enhancers and fertilizers. This paper addresses SUTAINEXT activities towards zero impacts and full regulatory compliance. A comprehensive Life Cycle Thinking approach is proposed, with four complementary assessments running iteratively along the project duration (4,5 years). These are the Life Cycle Cost (LCCA), Life Cycle (LCA), Social Life Cycle (S-LCA) and Circularity (CA) assessments. The LCA will help evaluate the feedstock suitability parameters and intrinsic characteristics that quantify the feedstock´s grade for a determined use, and the feedstock´s suitability index for a specific VR. The LCA will also study the emissions, land use change, energy generation and consumption, and other environmental aspects and impacts of the VRs, to identify the most resource efficient and less impactful distribution of products from the circular biorefinery model used in SUSTAINEXT. Challenges to complete the LCA include the definition of the system boundaries, carrying out a robust inventory, and the proper allocation of impacts to the different VRs.Keywords: biorefinery, botanical extracts, life cycle assessment, valorization routes.
Procedia PDF Downloads 221799 Application of Unconventional Materials for ‘Statement Jewellery’
Authors: Shaleni Bajpai, V. Niveditha
Abstract:
A fashion accessory is a product which used to give secondary way to the wearer’s outfit. The term came into use in the 19th century and was specifically chosen to complement the wearer’s look. The aim of project was to introduce the unconventional materials for statement jewellery. The materials used for statement jewellery were waste Cd’s, and scrap fabric. These materials were amalgamated with the traditional raw materials such as beads, sequins, charms and chains to form unique jewellery sets. The sets were divided into two categories based on the type of raw material used i.e. Category 1: Clef-Cd Jewellery, Category 2: Crumb-Fabric Jewellery. Each Jewellery set consisted of a necklace, a pair of earrings, a ring and a bracelet.Keywords: statement jewellery, unconventional, crumb fabric, Cd’s
Procedia PDF Downloads 2561798 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital
Authors: Esraa A. Khalil, Mohamed N. AbouZeid
Abstract:
Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital
Procedia PDF Downloads 1201797 Regenerating Habitats. A Housing Based on Modular Wooden Systems
Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez
Abstract:
Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.Keywords: modular, timber, flexibility, housing
Procedia PDF Downloads 761796 Multidisciplinary Approach to Diagnosis of Primary Progressive Aphasia in a Younger Middle Aged Patient
Authors: Robert Krause
Abstract:
Primary progressive aphasia (PPA) is a neurodegenerative disease similar to frontotemporal and semantic dementia, while having a different clinical image and anatomic pathology topography. Nonetheless, they are often included under an umbrella term: frontotemporal lobar degeneration (FTLD). In the study, examples of diagnosing PPA are presented through the multidisciplinary lens of specialists from different fields (neurologists, psychiatrists, clinical speech therapists, clinical neuropsychologists and others) using a variety of diagnostic tools such as MR, PET/CT, genetic screening and neuropsychological and logopedic methods. Thanks to that, specialists can get a better and clearer understanding of PPA diagnosis. The study summarizes the concrete procedures and results of different specialists while diagnosing PPA in a patient of younger middle age and illustrates the importance of multidisciplinary approach to differential diagnosis of PPA.Keywords: primary progressive aphasia, etiology, diagnosis, younger middle age
Procedia PDF Downloads 1931795 Coping with Geological Hazards during Construction of Hydroelectric Projects in Himalaya
Authors: B. D. Patni, Ashwani Jain, Arindom Chakraborty
Abstract:
The world’s highest mountain range has been forming since the collision of Indian Plate with Asian Plate 40-50 million years ago. The Indian subcontinent has been deeper and deeper in to the rest of Asia resulting upliftment of Himalaya & Tibetan Plateau. The complex domain has become a major challenge for construction of hydro electric projects. The Himalayas are geologically complex & seismically active. Shifting of Indian Plate northwardly and increasing the amount of stresses in the fragile domain which leads to deformation in the form of several fold, faults and upliftment. It is difficult to undergo extensive geological investigation to ascertain the geological problems to be encountered during construction. Inaccessibility of the terrain, high rock cover, unpredictable ground water condition etc. are the main constraints. The hydroelectric projects located in Himalayas have faced many geological and geo-hydrological problems while construction of surface and subsurface works. Based on the experience, efforts have been made to identify the expected geological problems during and after construction of the projects. These have been classified into surface and subsurface problems which include existence of inhomogeneous deep overburden in the river bed or buried valley, abrupt change in bed rock profile, Occurrences of fault zones/shear zones/fractured rock in dam foundation and slope instability in the abutments. The tunneling difficulties are many such as squeezing ground condition, popping, rock bursting, high temperature gradient, heavy ingress of water, existence of shear seams/shear zones and emission of obnoxious gases. However, these problems were mitigated by adopting suitable remedial measures as per site requirement. The support system includes shotcrete, wire mesh, rock bolts, steel ribs, fore-poling, pre-grouting, pipe-roofing, MAI anchors, toe wall, retaining walls, reinforced concrete dowels, drainage drifts, anchorage cum drainage shafts, soil nails, concrete cladding and shear keys. Controlled drilling & blasting, heading & benching, proper drainage network and ventilation system are other remedial measures adopted to overcome such adverse situations. The paper highlights the geological uncertainties and its remedial measures in Himalaya, based on the analysis and evaluation of 20 hydroelectric projects during construction.Keywords: geological problems, shear seams, slope, drilling & blasting, shear zones
Procedia PDF Downloads 4001794 Urban Furniture: Relationship between Metropolises Environment and Humans
Authors: Najmehossadat Enjoo
Abstract:
Beautification means all mindfully measurements to improve quality of urban environment which makes the city more suitable for its inhabitants' life. Purpose of beautification is to provide an environment in which all citizens take pleasure. Beautification aims at urban environment's quality improvement. In space among buildings and constructions some supplementary elements are required to furnish urban life; equipment like house furniture makes life possible in a space surrounded with stones, concrete, and glass. Such elements regulate the flow of movement, rest, recreation and stress in a city and exhilarate it. Urban furniture is the common term used for such facilities and capabilities. Nowadays, experience and application of urban elements have proved that to what extent using proper equipment and furniture can positively affect the citizens and users of urban environments.Keywords: urban servitudes, urban design, urban furniture, visage of city
Procedia PDF Downloads 4951793 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production
Authors: Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector
Procedia PDF Downloads 1201792 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma
Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze
Abstract:
The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope
Procedia PDF Downloads 3821791 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production
Authors: Lubomir Machuca, Vit Fara
Abstract:
Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry
Procedia PDF Downloads 2391790 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters
Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas
Abstract:
Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.Keywords: ammonia removal, biofiltration, natural materials, odour control
Procedia PDF Downloads 3671789 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement
Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura
Abstract:
The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.Keywords: big data, dashboards, floating population, smart city, urban management solutions
Procedia PDF Downloads 2871788 Development of Children through the Prism of Pending Bills in India: An Analytical Study
Authors: S. Sunaina, Neha Saini
Abstract:
Children are considered as future of a country. In order to have a better future, better laws are required in the present, especially for the children. Their development primarily revolves around physical, mental, psychological, emotional and financial facets. Hence the holistic development of a child in the contemporary society is a must in order to secure a better future. The present paper is an endeavour to analyse the development of children in India vis-a-vis The Child Development Bill 2016 and Child Labour (Abolition) Bill 2016 pending before the Indian Parliament. The findings of the study will attempt to highlight the flaws of the Bills and their probable repercussions, supporting the same with Constitutional provisions, judicial precedents, and the international perspective. Finally, the paper will conclude with concrete suggestions to overcome the flaws of the Bills so that the Bills, when passed, can be sincerely implemented.Keywords: bill, children, development, repercussion
Procedia PDF Downloads 2691787 The Safety Related Functions of The Engineered Barriers of the IAEA Borehole Disposal System: The Ghana Pilot Project
Authors: Paul Essel, Eric T. Glover, Gustav Gbeddy, Yaw Adjei-Kyereme, Abdallah M. A. Dawood, Evans M. Ameho, Emmanuel A. Aberikae
Abstract:
Radioactive materials mainly in the form of Sealed Radioactive Sources are being used in various sectors (medicine, agriculture, industry, research, and teaching) for the socio-economic development of Ghana. The use of these beneficial radioactive materials has resulted in an inventory of Disused Sealed Radioactive Sources (DSRS) in storage. Most of the DSRS are legacy/historic sources which cannot be returned to their manufacturer or country of origin. Though small in volume, DSRS can be intensively radioactive and create a significant safety and security liability. They need to be managed in a safe and secure manner in accordance with the fundamental safety objective. The Radioactive Waste Management Center (RWMC) of the Ghana Atomic Energy Commission (GAEC) is currently storing a significant volume of DSRS. The initial activities of the DSRS range from 7.4E+5 Bq to 6.85E+14 Bq. If not managed properly, such DSRS can represent a potential hazard to human health and the environment. Storage is an important interim step, especially for DSRS containing very short-lived radionuclides, which can decay to exemption levels within a few years. Long-term storage, however, is considered an unsustainable option for DSRS with long half-lives hence the need for a disposal facility. The GAEC intends to use the International Atomic Energy Agency’s (IAEA’s) Borehole Disposal System (BDS) to provide a safe, secure, and cost-effective disposal option to dispose of its DSRS in storage. The proposed site for implementation of the BDS is on the GAEC premises at Kwabenya. The site has been characterized to gain a general understanding in terms of its regional setting, its past evolution and likely future natural evolution over the assessment time frame. Due to the long half-lives of some of the radionuclides to be disposed of (Ra-226 with half-life of 1600 years), the engineered barriers of the system must be robust to contain these radionuclides for this long period before they decay to harmless levels. There is the need to assess the safety related functions of the engineered barriers of this disposal system.Keywords: radionuclides, disposal, radioactive waste, engineered barrier
Procedia PDF Downloads 801786 Application of Recycled Paper Mill Sludge on the Growth of Khaya Senegalensis and Its Effect on Soil Properties, Nutrients and Heavy Metals
Authors: A. Rosazlin Abdullah, I. Che Fauziah, K. Wan Rasidah, A. B. Rosenani
Abstract:
The paper industry performs an essential role in the global economy of the world. A study was conducted on the paper mill sludge that is applied on the Khaya senegalensis for 1 year planning period at University Agriculture Park, Puchong, Selangor, Malaysia to determine the growth of Khaya senegalensis, soil properties, nutrients concentrations and effects on the status of heavy metals. Paper Mill Sludge (PMS) and composted Recycled Paper Mill Sludge (RPMS) were used with different rates of nitrogen (0, 150, 300 and 600 kg ha-1) at the ratio of 1:1 (Recycled Paper Mill Sludge (RPMS) : Empty Fruit Brunch (EFB). The growth parameters were measured twice a month for 1 year. Plant nutrients and heavy metal uptake were determined. The paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of RPMS with N, significantly contributed to the improvement in plant growth parameters such as plant height (4.24 m), basal diameter (10.30 cm), total plant biomass and improved soil physical and chemical properties. The pH, EC, available P and total C in soil were varied among the treatments during the planting period. The treatments with raw and RPM compost had higher pH values than those applied with inorganic fertilizer and control. Nevertheless, there was no salinity problem recorded during the planting period and available P in soil treated with raw and RPMS compost was higher than the control plots that reflects the mineralization of organic P from the decomposition of pulp sludge. The weight of the free and occluded light fractions of carbon concentration was significantly higher in the soils treated with raw and RPMS compost. The application of raw and composted RPMS gave significantly higher concentration of the heavy metals, but the total concentrations of heavy metals in the soils were below the critical values. Hence, the paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat. The use of paper mill sludge for the soil fertility, shows improvement in land application signifies a unique opportunity to recycle sludge back to the land to alleviate the potential waste management problem.Keywords: growth, heavy metals, nutrients uptake, production, waste management
Procedia PDF Downloads 3671785 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 841784 Research on the Environmental Assessment Index of Brownfield Redevelopment in Taiwan: A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch
Authors: Min-Chih Yang, Shih-Jen Feng, Bo-Tsang Li
Abstract:
The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land. The subject of this study is Formosa Chemicals & Fibre Corporation, Changhua branch in Taiwan. It has been operating for nearly 50 years and contributing a lot to the local economy. But under the influence of the toxic waste and sewage which was drained regularly or occasionally out from the factory, the environment has been destroyed seriously. There are three factors of pollution: 1. environmental toxicants, carbon disulfide, released from producing processes and volatile gases which is hard to monitor; 2. Waste and exhaust gas leakage caused by outdated equipment; 3. the wastewater discharge has seriously damage the ecological environment of the Dadu river estuary. Because of all these bad influences, the factory has been closed nowadays and moved to other places to spare the opportunities for the contaminated lands to re-develop. So we collect information about related Brownfield management experience and policies in different countries as background information to investigate the current Taiwanese Brownfield redevelopment issues and built the environmental assessment framework for it. We hope that we can set the environmental assessment indexes for Formosa Chemicals & Fibre Corporation, Changhua branch according to the framework. By investigating the theory and environmental pollution factors, we will carry out deep analysis and expert questionnaire to set those indexes and prove a sample in Taiwan for Brownfield redevelopment and remediation in the future.Keywords: brownfield, industrial land, redevelopment, assessment index
Procedia PDF Downloads 3991783 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods
Authors: Ramandeep Behl, S. S. Motsa
Abstract:
The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley
Procedia PDF Downloads 5171782 Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries
Authors: Yuanjun Chen, Yongjiang Shi
Abstract:
Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues.Keywords: energy efficiency, energy management, industrial symbiosis, energy-intensive industry
Procedia PDF Downloads 4351781 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)
Procedia PDF Downloads 3611780 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection
Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi
Abstract:
During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.Keywords: coating, stainless steel, tribology, wear
Procedia PDF Downloads 148