Search results for: cell uptake
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4206

Search results for: cell uptake

1716 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes

Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov

Abstract:

Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of  5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.

Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics

Procedia PDF Downloads 282
1715 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 227
1714 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern-Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1. Their interaction with DNA of cancer cells may account for potency.

Keywords: anticancer agents, DNA binding studies, NMR spectroscopy, organotin

Procedia PDF Downloads 257
1713 Hypergraph Models of Metabolism

Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova

Abstract:

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Keywords: complexity, hypergraphs, reciprocity, metabolism

Procedia PDF Downloads 297
1712 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 331
1711 Developing Motorized Spectroscopy System for Tissue Scanning

Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken

Abstract:

The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).

Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning

Procedia PDF Downloads 191
1710 Studies of Reduction Metal Impurity in Residual Melt by Czochralski Method

Authors: Jaemin Kim, Ilsun Pang, Yongrae Cho, Kwanghun Kim, Sungsun Baik

Abstract:

Manufacturing cost reduction is becoming more important due to excessive oversupply of Single crystalline ingot in recent solar market. Many companies are carrying out extensive research to grow more than one Single crystalline ingot in one batch to reduce manufacturing cost. However what most companies are finding difficult in this process is the effect on ingot due to increasing levels of impurities. Every ingot leaves a certain amount of melt after it is fully grown. This is the impurity that lowers the ingot quality. This impurity increase in the batch after second, third and more are grown subsequently in one batch. In order to solve this problem, the experiment to remove the residual melt in high temperature of hot zone was performed and succeeded. Theoretical average metal concentration of second ingot by new method was calculated and compared to it by conventional method.

Keywords: single crystal, solar cell, metal impurity, Ingot

Procedia PDF Downloads 397
1709 Histological and Ultrastructural Study on the Effect

Authors: Olfat Mohamed Hussien Yousef

Abstract:

Tamoxifen (TM) is a synthetic non-steroidal antiestrogen. It is one of the most effective drugs for treatment of estrogen-dependent cancer by binding to estrogen receptors, suppressing of epithelial proliferation and as a chemotherapeutic agent. Recently, more attention has been paid to the protective effects of natural antioxidants against toxicities induced by anti-cancer drugs involving free radical-mediated oxidative stress and tissue injury. Vitamin C is a potent antioxidant that has the ability to scavenge factors causing free radical formation in animals receiving tamoxifen. The present study aims at pinpointing the TM-induced histopathological and ultrastructural changes in the kidneys and to assess the possible chemoprotective role of vitamin C against such TM-induced microscopic changes. Thirty adult male CD-1 mice, 25-30 g in weight and 3 months old, were divided into three groups. The first group served as control. The second group received the therapeutic dose of TM at daily oral dose of 40 mg/kg body weight for 28 days. The third group received the therapeutic dose of vitamin C at a daily dose of 500 mg/kg body weight simultaneously with the therapeutic dose of TM used in group two for 28 days. Animals were sacrificed and kidney samples were obtained and processed for histological and ultrastructural examination. Histological changes induced by TM included damage of the renal corpuscles including obliteration of the subcapsular space, congestion of the glomerular blood capillaries, segmental mesangial cell proliferation with matrix expansion, capsular adhesions with the glomerular tuft especially at the urinary pole of the corpuscles. Moreover, some proximal and distal tubules suffered various degrees of degeneration in some lining cells. Haemorrhage and inflammatory cell infiltration were also observed in the intertubular spaces. Ultrastructural observations revealed damage of the parietal epithelium of Bowman’s capsule, fusion and destruction of the foot processes of podocytes and great increase of mesangial cells and mesangial matrix. The cells of the proximal convoluted tubules displayed marked destruction of the microvilli constituting the brush borders and degeneration of the mitochondria; besides, abundant lysosomes, numerous vacuoles and pyknotic nuclei were observed. The distal convoluted tubules displayed marked distruction of both the basal infolding and the mitochondria in some areas. Histological and ultrastructural results revealed that treatment of male mice with TM simultaneously with vitamin C led to apparent repair of the injured renal tissue. This might suggest that vitamin C (an antioxidant agent) can minimize the toxic effects of TM (an antiestrogen).

Keywords: tamoxifen, vitamin c, mammalian kidney, histology, ultrastructure

Procedia PDF Downloads 379
1708 The Impact of COVID-19 Waste on Aquatic Organisms: Nano/microplastics and Molnupiravir in Salmo trutta Embryos and Lervae

Authors: Živilė Jurgelėnė, Vitalijus Karabanovas, Augustas Morkvėnas, Reda Dzingelevičienė, Nerijus Dzingelevičius, Saulius Raugelė, Boguslaw Buszewski

Abstract:

The short- and long-term effects of COVID-19 antiviral drug molnupiravir and micro/nanoplastics on the early development of Salmo trutta were investigated using accumulation and exposure studies. Salmo trutta were used as standardized test organisms in toxicity studies of COVID-19 waste contaminants. The 2D/3D imaging was performed using confocal fluorescence spectral imaging microscopy to assess the uptake, bioaccumulation, and distribution of molnupiravir and micro/nanoplastics complex in live fish. Our study results demonstrated that molnupiravir may interact with a micro/nanoplastics and modify their spectroscopic parameters and toxicity to S. trutta embryos and larvae. The 0.2 µm size microplastics at a concentration of 10 mg/L were found to be stable in aqueous media than 0.02 µm, and 2 µm sizes polymeric particles. This study demonstrated that polymeric particles can adsorb molnupiravir that are present in mixtures and modify the accumulation of molnupiravir in Salmo trutta embryos and larvae. In addition, 2D/3D confocal fluorescence imaging showed that the single polymeric particle hardly accumulates and couldn't penetrate outer tissues of the tested organism. However, co-exposure micro/nanoplastics and molnupiravir could significantly enhance the polymeric particles capability of accumulating on surface tissues and penetrating surface tissue of fish in early development. Exposure to molnupiravir at 2 g/L concentration and co-exposure to micro/nanoplastics and molnupiravir did not bring about survival changes in in the early stages of Salmo trutta development, but we observed the reduction in heart rate and decrease in gill ventilation. The statistical analysis confirmed that micro/nanoplastics used in combination with molnupiravir enhance the toxicity of the latter micro/nanoplastics to embryos and larvae. This research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: fish, micro/nanoplastics, molnupiravir, toxicity

Procedia PDF Downloads 95
1707 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite

Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini

Abstract:

In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.

Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation

Procedia PDF Downloads 473
1706 The Effect of Low Voltage Direct Current Applications on the Growth of Microalgae Chlorella Vulgaris

Authors: Osman Kök, İlhami̇ Tüzün, Yaşar Aluç

Abstract:

This study was conducted to explore the effect of direct current (DC) applications on the growth of microalgae Chlorella vulgaris KKU71, isolated from highly saline freshwater. Experiments were implemented based upon the cross-combinations of both the intensity and duration of electric applications, generating a full factorial design of 10V, 20V, 30V, and 5s, 30s, 60s, respectively. Growth parameters of cultures were monitored on Optical Density (OD), Cell Count (CC), Chlorophyll-a, b (Chl-a, b), and Total Carotenoids (TCar). All DC-assisted treatments stimulated the growth and thus led to higher values of growth parameters such as OD, CC, Chl-a, and TCar. Monotonically increasing with the intensity and duration of DC applications, wet and dry biomass yields of the harvested algae reached their highest level at 30V-60s in all sets of treatments. In addition, this increase between DC applications was listed as C(control)<10V<20V<30V and C<5s<30s<60s. As a result, direct current applications increased the biomass.

Keywords: Chlorella Vulgaris, direct current, growth, biomass

Procedia PDF Downloads 138
1705 The Effects of Food Matrix and Different Excipient Foods on β-Carotene Bioaccessibility in Carrots

Authors: Birgul Hizlar, Sibel Karakaya

Abstract:

Nowadays, consumers are more and more aware of the benefits beyond basic nutrition provided by food and food compounds. Between these, carotenoids have been demonstrated to exhibit multiple health benefits (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). However, carotenoid bioaccessibility and bioavailability is generally rather low due to their specific localization in plant tissue and lipophilic nature. This situation is worldwide issue, since both developed and developing countries have their interest and benefits in increasing the uptake of carotenoids from the human diet. Recently, a new class of foods designed to improve the bioaccessibility/bioavailability of orally administered bioactive compounds is introduced: excipient foods. Excipient foods are specially designed foods which are prepared depending on the physicochemical properties of target bioactive compounds and increasing the bioavailability or bioaccessibility of bioactive compound. In this study, effects of food matrix (greating, boiling and mashing) and different excipient foods (olive oil, lemon juice, whey curd and dried artichoke leaf powder) on bioaccessibility of β-carotene in carrot were investigated by means of simulating in vitro gastrointestinal (GI) digestion. β-carotene contents of grated, boiled and mashed (after boiling process) carrots were 79.28, 147.63 and 151.19 μg/g respectively. No significant differences among boiled and mashed samples indicated that mashing process had no effect on the release of β-carotene from the food matrix (p > 0.05). On the contrary, mashing causes significant increase in the β-carotene bioaccessibility (p < 0.05). The highest β-carotene content was found in the mashed carrots incorporated with olive oil and lemon juice (C2). However, no significant differences between that sample and C1 (mashed carrot with lemon juice, olive oil, dried artichoke leaf powder), C3 (mashed carrot with addition of olive oil, lemon juice, whey curd) and). Similarly, the highest β-carotene bioaccessibility (50.26%) was found mashed C3 sample (p < 0.05). The increase in the bioaccessibility was approximately 5 fold and 50 fold when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. The results demonstrate that both, food matrix and excipient foods, are able to increase the bioaccessibility of β-carotene.

Keywords: bioaccessibility, carotenoids, carrot, β-carotene

Procedia PDF Downloads 383
1704 Approaches to Eco-Friendly Architecture: Modules Assembled Specially to Conserve

Authors: Arshleen Kaur, Sarang Barbarwar, Madhusudan Hamirwasia

Abstract:

Sustainable architecture is going to be the soul of construction in the near future, with building material as a vital link connecting sustainability to construction. The priority in Architecture has shifted from having a lesser negative footprint to having a positive footprint on Earth. The design has to be eco-centric as well as anthro-centric so as to attain its true purpose. Brick holds the same importance like a cell holds in one’s body. The study focuses on this basic building block with an experimental material and technique known as Module Assembled Specially to Conserve (MASC). The study explores the usage and construction of these modules in the construction of buildings. It also shows the impact assessment of the modules on the environment and its significance in reducing the carbon footprint of the construction industry. The aspects like cost-effectiveness, ease of working and reusability of MASC have been studied as well.

Keywords: anthro-centric, carbon footprint, eco-centric, sustainable

Procedia PDF Downloads 175
1703 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process

Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak

Abstract:

Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.

Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds

Procedia PDF Downloads 242
1702 Devotional Informant and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstone’ Reservoir Quality, Sarir Formation, Sirt

Authors: Faraj M. Elkhatri, Hana Ellafi

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: formation damage, porosity loses, pore throat, quartz cement

Procedia PDF Downloads 56
1701 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 181
1700 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 88
1699 Zinc Oxide Thin Films Deposition by Spray Pyrolysis

Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf

Abstract:

Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

Keywords: precursor, thins films, spray pyrolysis, zinc oxide

Procedia PDF Downloads 327
1698 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells

Authors: Mariyappan Shanmugam, Bin Yu

Abstract:

Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier

Procedia PDF Downloads 330
1697 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride

Procedia PDF Downloads 450
1696 Synergistic and Antagonistic Interactions between Garlic Extracts and Metformin in Diabetes Treatment

Authors: Ikram Elsiddig, Yacouba Djamila, Amna Hamad

Abstract:

Abstract—The worldwide increasing of using herbs in form of medicine with or without prescription medications potentiates the interactions between herbal products and conventional medicines; due to more research for herb-drug interactions are needed. for a long time hyperglycemia had been treated with several medicinal plants. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol and high blood pressure. The purpose of this study is to determine the interaction effect between A. sativum bulb extracts and metformin drug used in diabetes treatment. The in vitro and in vivo evaluation were conducted by glucose reuptake using isolated rats hemidiaphgrams tissue and by estimate glucose tolerance in glucose-loaded wistar albino rats. The results showed that, petroleum ether, chloroform and ethyl acetate extracts were found to have activity of glucose uptake in isolated rats hemidiaphgrams of 24.11 mg/g, 19.07 mg/g and 15.66 mg/g compared to metformin drug of 17 mg/g. These activity were reducded to 17.8 mg/g, 13.59 mg/g and 14.46 mg/g after combination with metformin, metformin itself reduced to 13.59 mg/g, 14.46 mg/g and 12.71 mg/g in comination with chloroform and ethyl acetate. These decrease in activity could be due to herbal–drug interaction between the extracts of A. sativum bulb and metformin drug. The interaction between A. sativum extract and metformin was also shown by in vivo study on the induced hyperglycemic rats. The glucose level after administered of 200 mg/kg was found to be increase with 47.2 % and 17.7% at first and second hour compared to the increase of blood glucose in the control group of 82.6% and76.7%.. At fourth hour the glucose level was became less than normal with 3.4% compared to control which continue to increase with 68.2%. Dose of 400 mg/kg at first hour showed increase in blood glucose of 31.5 %, at second and fourth hours the glucose level was became less than normal with decrease of 3.2 % and 30.4%. After combination the activity was found to be less than that of extract at both high and low dose, whereas, at first and second hour, the glucose level was found to be increase with 50.4% and 21.2%, at fourth hour the glucose level was became less than normal with 14%. Therefore A. sativum could be a potential source for anti-diabetic when it used alone, and it is significant important to use the garlic extract alone instead of combined with Metformin drug in diabetes- treatment.

Keywords: Antagonistic, Garlic, Metformin, Synergistic

Procedia PDF Downloads 181
1695 Controlled Chemotherapy Strategy Applied to HIV Model

Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman

Abstract:

Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.

Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle

Procedia PDF Downloads 330
1694 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells

Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska

Abstract:

Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.

Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells

Procedia PDF Downloads 482
1693 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 67
1692 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 333
1691 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr

Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 349
1690 Immune Responses and Pathological Manifestations in Chicken to Oral Infection with Salmonella typhimurium

Authors: Mudasir Ahmad Syed, Raashid Ahmd Wani, Mashooq Ahmad Dar, Uneeb Urwat, Riaz Ahmad Shah, Nazir Ahmad Ganai

Abstract:

Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses. However, the Salmonella Typhimurium is also able to cause infection in humans, described by typhoid fever and acute gastro-intestinal disease. A study was conducted at days to investigate pathological, histopathological, haemato-biochemical, immunological and expression kinetics of NRAMP (natural resistance associated macrophage protein) gene family (NRAMP1 and NRAMP2) in broiler chickens following experimental infection of Salmonella Typhimurium at 0,1,3,5,7,9,11,13 and 15 days respectively. Infection was developed in birds through oral route at 2×108 CFU/ml. Clinical symptoms appeared 4 days post infection (dpi) and after one-week birds showed progressive weakness, anorexia, diarrhea and lowering of head. On postmortem examination, liver showed congestion, hemorrhage and necrotic foci on surface, while as spleen, lungs and intestines revealed congestion and hemorrhages. Histopathological alterations were principally observed in liver in second week post infection. Changes in liver comprised of congestion, areas of necrosis, reticular endothelial hyperplasia in association with mononuclear cell and heterophilic infiltration. Hematological studies confirm a significant decrease (P<0.05) in RBC count, Hb concentration and PCV. White blood cell count showed significant increase throughout the experimental study. An increase in heterophils was found up to 7dpi and a decreased pattern was observed afterwards. Initial lymphopenia followed by lymphocytosis was found in infected chicks. Biochemical studies showed a significant increase in glucose, AST and ALT concentration and a significant decrease (P<0.05) in total protein and albumin level in the infected group. Immunological studies showed higher titers of IgG in infected group as compared to control group. The real time gene expression of NRAMPI and NRAMP2 genes increased significantly (P<0.05) in infected group as compared to controls. The peak expression of NRAMP1 gene was seen in liver, spleen and caecum of infected birds at 3dpi, 5dpi and 7dpi respectively, while as peak expression of NRAMP2 gene in liver, spleen and caecum of infected chicken was seen at 9dpi, 5dpi and 9dpi respectively. This study has role in diagnostics and prognostics in the poultry industry for the detection of salmonella infections at early stages of poultry development.

Keywords: biochemistry, histopathology, NRAMP, poultry, real time expression, Salmonella Typhimurium

Procedia PDF Downloads 332
1689 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 556
1688 MicroRNA 200c-3p Regulates Autophagy Mediated Upregulation of Endoplasmic Reticulum Stress in PC-3 Cells

Authors: Eun Jung Sohn, Hwan Tae Park

Abstract:

Autophagy is a cellular response to stress or environment on cell survival. Here, we investigated the role of ectopic expression of miR 200c-3p in autophagy. Ectopic expression of miR 200c-3p increased the expression of IRE1alpha, ATF6 and CHOP by western blot and RT-qPCR. Furthermore, the level of microRNA 200c-3p was enhanced by treatment of TG or overexpression of GRP 78. Also, ectopic expression of miR200c-3p increased the LC3 II expression by western blot and RT-qPCR. Also, we found that western blot assay showed that miR200c-3p inhibitor was blocked the starvation–induced LC3II levels. Furthermore, starvation stress increased the level of miR200c-3p in different kinetics. Ectopic expression of miR200c-3p attenuated LC3II expression in IRE1 siRNA transfected PC3 cells. Here, we first demonstrate that miR200c-3p regulates autophagy via ER stress pathway.

Keywords: Autophagy, ER stress, LC3II, miR200c-3p

Procedia PDF Downloads 287
1687 Solar Technology: A Review of Government-Sponsored Green Energy

Authors: Christopher Battle

Abstract:

The pursuit of a sustainable future is dependent on the ability of governments from the national to municipal level. The politics of energy and the development of state-sponsored photovoltaic cell expansion can nebulize in several ways based on a state or nation's physical and human geography. This study conducts a comparative analysis of the energy and solar program of Turkey, Pennsylvania, and Philadelphia. The study aims to assess the city of Philadelphia's solar policies in contrast with both its political history and the photovoltaic programs of Turkey, a world leader in solar system development, and Pennsylvania's history of energy regulation. This comparative study found that after hundreds of bills and regulations over decades, sustainable energy development in affordable housing and new construction is the next phase of State-Sponsored Green energy for the city of Philadelphia.

Keywords: Turkey, solar power, Philadelphia, affordable energy development

Procedia PDF Downloads 94