Search results for: role model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25243

Search results for: role model

22783 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 33
22782 Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS

Authors: Aniruddha Joshi

Abstract:

This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output.

Keywords: automated sand casting production system, simulation, WITNESS software, performance evaluation

Procedia PDF Downloads 789
22781 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: elastic scattering, optical model, folding potential, density distribution

Procedia PDF Downloads 141
22780 Test of Capital Account Monetary Model of Floating Exchange Rate Determination: Further Evidence from Selected African Countries

Authors: Oloyede John Adebayo

Abstract:

This paper tested a variant of the monetary model of exchange rate determination, called Frankel’s Capital Account Monetary Model (CAAM) based on Real Interest Rate Differential, on the floating exchange rate experiences of three developing countries of Africa; viz: Ghana, Nigeria and the Gambia. The study adopted the Auto regressive Instrumental Package (AIV) and Almon Polynomial Lag Procedure of regression analysis based on the assumption that the coefficients follow a third-order Polynomial with zero-end constraint. The results found some support for the CAAM hypothesis that exchange rate responds proportionately to changes in money supply, inversely to income and positively to interest rates and expected inflation differentials. On this basis, the study points the attention of monetary authorities and researchers to the relevance and usefulness of CAAM as appropriate tool and useful benchmark for analyzing the exchange rate behaviour of most developing countries.

Keywords: exchange rate, monetary model, interest differentials, capital account

Procedia PDF Downloads 413
22779 The Role of Meaningful Work in Transformational Leadership and Work Outcomes Relationship

Authors: Zainur Rahman

Abstract:

Meaningful work is the topic that will be discussed in this article, especially in changing period. It has an important role because by reaching meaningful work, it will drive to be positive in the workplace. Therefore, task performance will be increased and cynicism about organizational change (CAOC) will be reduced. Moreover, it is influenced by situational factor, which is transformational leadership. In this conceptual paper, the author discusses how the construct of meaningful work influenced by transformational leadership that will have impact on the follower’ work outcomes in the organizational change. It is proposed that the construct of meaningful work are susceptible with situational variable. Transformational leaders who are respectful on the process of humanizing the followers affect task performance and reduce CAOC in organizational change.

Keywords: transformational leadership, meaningful work, task performance, CAOC

Procedia PDF Downloads 321
22778 The Impact of Bequest Taxation on Human Capital Accumulation

Authors: Maciej Dudek, Robert Kruszewski, Janusz Kudla, Konrad Walczyk

Abstract:

In this paper, we study how taxation of bequests affects human capital formation in the long term and short term horizon. Our underlying model is an overlapping generation model (OLG) with some degree of altruism on the part of the ancestors' generation towards their descendants. We ask the question in three separate frameworks. First, we study a simple one-sector model where a proxy of human capital is wage income. It the steady-state -for CRRA utility function and human capital produced with non-decreasing returns -the taxation of bequests is neutral to the accumulation of human capital. In the second framework, neutrality applies to the growth rates of human capital, physical capital, and consumption. In this case, taxation increases the level of bequests, leading to a lower value of current consumption. Finally in we consider two periods model instead of infinite horizon model as long as the tax revenue is at least partially rebated back to the public, the fraction of human capital engaged in the process of formation of human capital increases with the tax rate on bequests. In other words, taxation of bequests is partially offset by an increase in human capital formation. Higher human capital allows the future generation to earn higher wages, and today's generation can find it optimal to endow the future generation with more human capital when taxation is imposed on physical capital transferred to the next generation.

Keywords: taxation, bequests, policy, human capital

Procedia PDF Downloads 168
22777 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 413
22776 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 84
22775 A Critical Review of Mechanization in Rice Farming in Indonesia

Authors: K. Suheiti, P. Soni, Yardha

Abstract:

Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement.

Keywords: farming, Indonesia, mechanization, rice

Procedia PDF Downloads 496
22774 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
22773 Applying the Fuzzy Analytic Network Process to Establish the Relative Importance of Knowledge Sharing Barriers

Authors: Van Dong Phung, Igor Hawryszkiewycz, Kyeong Kang, Muhammad Hatim Binsawad

Abstract:

Knowledge sharing (KS) is the key to creativity and innovation in any organizations. Overcoming the KS barriers has created new challenges for designing in dynamic and complex environment. There may be interrelations and interdependences among the barriers. The purpose of this paper is to present a review of literature of KS barriers and impute the relative importance of them through the fuzzy analytic network process that is a generalization of the analytical hierarchy process (AHP). It helps to prioritize the barriers to find ways to remove them to facilitate KS. The study begins with a brief description of KS barriers and the most critical ones. The FANP and its role in identifying the relative importance of KS barriers are explained. The paper, then, proposes the model for research and expected outcomes. The study suggests that the use of the FANP is appropriate to impute the relative importance of KS barriers which are intertwined and interdependent. Implications and future research are also proposed.

Keywords: FANP, ANP, knowledge sharing barriers, knowledge sharing, removing barriers, knowledge management

Procedia PDF Downloads 334
22772 The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease

Authors: Francesca La Rosa , Marina Saresella, Mario Clerici, Michael Heneka

Abstract:

Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease.

Keywords: Alzheimer disease, innate immunity, neuroinflammation, NLRP3

Procedia PDF Downloads 456
22771 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
22770 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz

Authors: A. V. Patil

Abstract:

The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.

Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine

Procedia PDF Downloads 304
22769 Stimulating the Social Emotional Development of Children through Play Activities: The Role of Teachers and Parents Support

Authors: Mahani Razali, Nordin Mamat

Abstract:

The purpose of this research is to identify the teacher’s role and parent’s participation to develop children`s socio emotion through play activities. This research is based on three main objectives which are to identify children`s socio emotion during play activities, teacher’s role and parent’s participation to develop children`s socio emotion. This qualitative study was carried out among 25 pre-school children, three teachers and three parents as the research sample. On the other hand, parent’s support was obtained from their discussions, supervisions and communication at home. The data collection procedures involved structured observation which was to identify socio emotional development element among pre-school children through play activities; as for semi-structured interviews, it was done to study the perception of the teachers and parents on the acquired socio emotional development among the children. Besides, documentation analysis method was used as to triangulate acquired information with observations and interviews. In this study, the qualitative data analysis was tabulated in descriptive manner with frequency and percentage format. This study primarily focused on five main socio emotional elements among the pre-school children: 1) Cooperation, 2) Confidence and Courage, 3) Ability to communicate, 4) patience, and 5) Tolerance. The findings of this study were presented in the form of case to case manner from the researches sample. Findings revealed that the children showed positive outcomes on the socio emotional development during their play. Both teachers and parents showed positive perceptions towards the acquired socio emotional development during their play activities. In conclusion, this research summarizes that teacher’s role and parent’s support can improve children`s socio emotional development through play activities. As a whole, this research highlighted the significance of play activities as to stimulate socio emotional development among the pre-school children.

Keywords: social emotional, children, play activities, stimulating

Procedia PDF Downloads 407
22768 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 156
22767 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 349
22766 'Gender' and 'Gender Equalities': Conceptual Issues

Authors: Moustafa Ali

Abstract:

The aim of this paper is to discuss and question some of the widely accepted concepts within the conceptual framework of gender from terminological, scientific, and Muslim cultural perspectives, and to introduce a new definition and a model of gender in the Arab and Muslim societies. This paper, therefore, uses a generic methodology and document analysis and comes in three sections and a conclusion. The first section discusses some of the terminological issues in the conceptual framework of gender. The second section highlights scientific issues, introduces a definition and a model of gender, whereas the third section offers Muslim cultural perspectives on some issues related to gender in the Muslim world. The paper, then, concludes with findings and recommendations reached so far.

Keywords: gender definition, gender equalities, sex-gender separability, fairness-based model of gender

Procedia PDF Downloads 136
22765 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 175
22764 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company

Authors: Farzad Jafarpour Taher, Maghsud Solimanpur

Abstract:

Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.

Keywords: multi-period, multi-product production, multi-stage, production planning

Procedia PDF Downloads 98
22763 Caspase-11 and AIM2 Inflammasome are Involved in Smoking-Induced COPD and Lung Adenocarcinoma

Authors: Chiara Colarusso, Michela Terlizzi, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Cigarette smoking is the main cause and the most common risk factor for both COPD and lung cancer. In our previous studies, we proved that caspase-11 in mice and its human analogue, caspase-4, are involved in lung carcinogenesis and that AIM2 inflammasome might play a pro-cancerous role in lung cancer. Therefore, the aim of this study was to investigate potential crosstalk between COPD and lung cancer, focusing on AIM2 and caspase-11-dependent inflammasome signaling pathway. To mimic COPD, we took advantage of an experimental first-hand smoking mouse model and, to confirm what was observed in mice, we used human samples of lung adenocarcinoma patients stratified according to the smoking and COPD status. We demonstrated that smoke exposure led to emphysema-like features, bronchial tone impairment, and release of IL-1-like cytokines (IL-1α, IL-1β, IL-33, IL-18) in a caspase-1 independent manner in C57Bl/6N. Rather, a dysfunctional caspase-11 in smoke-exposed 129Sv mice was associated to lower bronchial inflammation, collagen deposition, and IL-1-like inflammation. In addition, for the first time, we found that AIM2 inflammasome is involved in lung inflammation in smoking and COPD, in that its expression was higher in smoke-exposed C57Bl/6N compared to 129Sv smoking mice, who instead did not show any alteration of AIM2 in both macrophages and dendritic cells. Moreover, we found that AIM2 expression in the cancerous tissue, albeit higher than non-cancerous tissue, was not statistically different according to the COPD and smoking status. Instead, the higher expression of AIM2 in non-cancerous tissue of smoker COPD patients than smokers who did not have COPD was correlated to a higher hazard ratio of poor survival rate than patients who presented lower levels of AIM2. In conclusion, our data highlight that caspase-11 in mice is associated to smoke-induced lung latent inflammation which could drive the establishment of lung cancer, and that AIM2 inflammasome plays a role at the crosstalk between smoking/COPD and lung adenocarcinoma in that its higher presence is correlated to lower survival rate of smoker COPD adenocarcinoma.

Keywords: COPD, inflammasome, lung cancer, lung inflammation, smoke

Procedia PDF Downloads 156
22762 A Culturally Responsive Based Framework for French Immersion Public Schools in Ontario

Authors: Kimberly Auger

Abstract:

This paper offers a rudimentary vision of a French Immersion Framework based on inclusion and equity in an Ontario school system. It examines the role that culture plays in responsive and equitable French Immersion education firstly by contextualizing French Immersion Education and Equity and Inclusive Education in the historical and political situation of Ontario, Canada. By laying a foundational understanding of the role culture plays in education, it then argues the importance of acknowledging and including teacher culture, student culture, and school culture into a French Immersion Framework to create a space that is more equitable, inclusive, and responsive to all.

Keywords: French immersion education, Ontario education, equity and inclusive education, bilingual education

Procedia PDF Downloads 19
22761 The Moderating Effect of Pathological Narcissism in the Relationship between Victim Justice Sensitivity and Anger Rumination

Authors: Isil Coklar-Okutkan, Miray Akyunus

Abstract:

Victim sensitivity is a form of justice sensitivity that reflects the tendency to perceive injustice to one’s disadvantage. Victim sensitivity is considered as a dysfunctional trait that predicts anger, aggression, uncooperative behavior, depression and anxiety. Indeed, exploring the mechanism of association between victim sensitivity and anger is clinically important since it can lead to externalizing and internalizing problems. This study aims to investigate the moderating role of pathological narcissism in the relationship between victim sensitivity and anger rumination. Through testing different models where subtypes of narcissism and anger rumination components are included independently, the specific mechanism of different ruminative processes in anger is investigated. The sample consisted of 311 undergraduate students from Turkey, 107 of whom were males, and 204 were females. Participants completed Justice Sensitivity Inventory-Victim Subscale, Pathological Narcissism Inventory and Anger Rumination Scale. In the proposed double moderation model, vulnerable and grandiose narcissism was the moderators in the relationship between victim justice sensitivity and anger rumination. Four separate models were tested where one of the four components of anger rumination (angry afterthoughts, thoughts of revenge, angry memories, understanding of causes) were the dependent variable in each model. Results revealed that two of the moderation models are significant. Firstly, grandiose narcissism is the only moderator in the relationship between victim sensitivity and thoughts of revenge. Secondly, vulnerable narcissism is the only moderator in the relationship between victim sensitivity and understanding causes. Accordingly, grandiose narcissism is positively associated with the thoughts of revenge, and vulnerable narcissism is positively associated with understanding causes, only when the level of victim sensitivity is high. To summarize, increased victim sensitivity leads to ruminative thoughts of revenge in individuals with grandiose narcissism, whereas it leads to rumination on causes of the incident in individuals with vulnerable narcissism. The clinical implications of the findings are discussed.

Keywords: anger rumination, victim sensitivity, grandiose narcissism, vulnerable narcissism

Procedia PDF Downloads 203
22760 Logistics Model for Improving Quality in Railway Transport

Authors: Eva Nedeliakova, Juraj Camaj, Jaroslav Masek

Abstract:

This contribution is focused on the methodology for identifying levels of quality and improving quality through new logistics model in railway transport. It is oriented on the application of dynamic quality models, which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process within logistics chain can be taken into account. Various models describe the improvement of the quality which emphases the time factor throughout the whole transportation logistics chain. Quality of services in railway transport can be determined by the existing level of service quality, by detecting the causes of dissatisfaction employees but also customers, to uncover strengths and weaknesses. This new logistics model is able to recognize critical processes in logistic chain. It includes service quality rating that must respect its specific properties, which are unrepeatability, impalpability, their use right at the time they are provided and particularly changeability, which is significant factor in the conditions of rail transport as well. These peculiarities influence the quality of service regarding the constantly increasing requirements and that result in new ways of finding progressive attitudes towards the service quality rating.

Keywords: logistics model, quality, railway transport

Procedia PDF Downloads 570
22759 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix

Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung

Abstract:

The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.

Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation

Procedia PDF Downloads 474
22758 Microbes in Aquaculture: New Trends and Application in Freshwater Fish Culture

Authors: Muhammad Younis Laghari

Abstract:

Microbial communities play the most important role in aquatic ecosystems. These microbes have a great role in fish growth and aquaculture production. Unfortunately, the farmers are unaware of these useful creatures. Nowadays, the trend of fish farming is developed to re-circulatory aquaculture system (RAS) to increase production and reduce the investment/management cost to increase the profit. However, sometimes, it has been observed that even the growth of fish is decreased in RAS without apparent changes in water quality. There is a great importance of microorganisms in aquaculture, where they occur naturally. However, they can be added artificially by applying different roles. Even these microbes play an important role in the degradation of organic matter and recycling nutrients, along with nutritional support to fish. Even some microorganisms may protect fish and larvae against diseases. But if not managed/utilized properly, they may cause to infect or kill the fish and their larvae. However, manipulating the microbes and monitoring them in aquaculture systems hold great potential to assess and improve the water quality as well as to control the development of microbial infections. While there is an utmost need for research to determine the microbiomes of healthy aquaculture systems, we also need to develop authentic methods for the successful manipulation of microbes as well as engineer these microbiomes. Hence, we should develop a plan to utilize and get full advantage from these microbial interactions for the successful management of aquaculture through advanced research and technology.

Keywords: aquaculture, ecology system, degradation, microbes, nutrient recycling, water quality

Procedia PDF Downloads 82
22757 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering

Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli

Abstract:

Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.

Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model

Procedia PDF Downloads 514
22756 The Development of Directed-Project Based Learning as Language Learning Model to Improve Students' English Achievement

Authors: Tri Pratiwi, Sufyarma Marsidin, Hermawati Syarif, Yahya

Abstract:

The 21st-century skills being highly promoted today are Creativity and Innovation, Critical Thinking and Problem Solving, Communication and Collaboration. Communication Skill is one of the essential skills that should be mastered by the students. To master Communication Skills, students must first master their Language Skills. Language Skills is one of the main supporting factors in improving Communication Skills of a person because by learning Language Skills students are considered capable of communicating well and correctly so that the message or how to deliver the message to the listener can be conveyed clearly and easily understood. However, it cannot be denied that English output or learning outcomes which are less optimal is the problem which is frequently found in the implementation of the learning process. This research aimed to improve students’ language skills by developing learning model in English subject for VIII graders of SMP N 1 Uram Jaya through Directed-Project Based Learning (DPjBL) implementation. This study is designed in Research and Development (R & D) using ADDIE model development. The researcher collected data through observation, questionnaire, interview, test, and documentation which were then analyzed qualitatively and quantitatively. The results showed that DPjBL is effective to use, it is seen from the difference in value between the pretest and posttest of the control class and the experimental class. From the results of a questionnaire filled in general, the students and teachers agreed to DPjBL learning model. This learning model can increase the students' English achievement.

Keywords: language skills, learning model, Directed-Project Based Learning (DPjBL), English achievement

Procedia PDF Downloads 165
22755 The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment

Authors: Farman Ali, Asif Mahmood

Abstract:

The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care.

Keywords: prostate cancer, genetic markers, personalized medicine, BRCA1 and BRCA2

Procedia PDF Downloads 62
22754 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493