Search results for: surface charge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7277

Search results for: surface charge

4877 Characterisation of the H-ZSM-5 Zeolite Samples Synthesized in Wide Range of Si/Al Ratios and with H₂SO₄ and CH₃COOH Acids Used for Transformation to H-Form

Authors: Mladen Jankovic, Biljana Djuric, Djurdja Oljaca, Vladimir Damjanovic, Radislav Filipovic, Zoran Obrenovic

Abstract:

One of the key characteristics of zeolites with ZSM-5 crystalline form is the possibility of synthesis in a wide range of molar ratios, from the relatively low ratio of about 20 to highly silicate forms with a Si/Al ratio over 1000. For industrial production and commercial use of this type of zeolite, it is very important to know the influence of the molar Si/Al ratio on the characteristics of zeolite powders. In this paper, the influence of the Si/Al ratio on the characteristics of H-ZSM-5 zeolites synthesized in the presence of tetrapropylammonium bromide is questioned, including the possibility of conversion to the H-form using different acids. The quality of the samples is characterized in terms of crystallinity, chemical composition, morphology, granulometry, specific surface area (BET), pore size and acidity. XRD, FT-IR, EDX, ICP, SEM and TPD instrumental techniques were used to characterize the samples. In most of the performed syntheses, zeolite has been obtained with very good properties. It was shown that the examined conditions have a significant influence on the characteristics of the synthesized powders. The different chemical composition of the starting mixture, ie. the Si/Al ratio, has a very significant influence on the crystal structure of the synthesized powders, and thus on the other tested characteristics. It has been observed that optimal ion exchange results for powders of different Si/Al ratios are achieved by using different acids. Also, the dependence of the specific surface on the concentration of H+ or Na+ ions was confirmed.

Keywords: Characterisation, H-ZSM-5, molar ratio, synthesis, tetrapropylammonium bromide

Procedia PDF Downloads 198
4876 Preparation of Amla (Phyllanthus emblica) Powder Using Spray Drying Technique

Authors: Shubham Mandliya, Pooja Pandey, H. N. Mishra

Abstract:

Amla (Phyllanthus emblica), a plant of Euphorbiaceous is widely distributed in subtropical and tropical areas of China, India, Indonesia, and Malaysia. Amla is very high in vitamin C content. Spray drying of fruit juices represents another alternative way to improve the physicochemical stability and increase their shelf life. Samples of amla powder were produced using the spray drying method to investigate the effect of inlet temperatures and maltodextrin levels. The spray dryer model used was a laboratory scale dryer and samples were run at different temperatures and concentrations. The response surface methodology (RSM) was used to optimize the spray-drying process for the development of amla powder. The resultant powders were then analyzed for vitamin C, moisture, solubility and dispersibility. The spray dried amla powder contains higher amounts of vitamin C when compared to commercial fruit juice powders. SEM analysis revealed that lower maltodextrin levels and higher inlet air temperatures resulted in smaller but smoother particles. At lower temperature, vitamin C content is high as compared to higher temperature. Spray drying is an effective as well as an economic method which can be commercially used for making powder rather than by tray or solar drying as more fraction is retained with less cost.

Keywords: Amla powder, physiochemical properties, response surface methodology, spray drying

Procedia PDF Downloads 241
4875 Synergistic Effects of the Substrate-Ligand Interaction in Metal-Organic Complexes on the De-electronation Kinetics of a Vitamin C Fuel Cell

Authors: Muskan Parmar, Musthafa Ottakam Thotiyl

Abstract:

The rising need for portable energy sources has led to advancements in direct liquid fuel cells (DLFCs) using various fuels like alcohol, ammonia, hydrazine, and vitamin C. Traditional precious metal catalysts improve reaction speeds but are expensive and prone to poisoning. Our study reveals how non-precious metal organometallic complexes, combined with smartly designed ligands, can significantly boost performance. The key is a unique interaction between the substrate (fuel) and the ligand, which creates a "dragging" effect that enhances reaction rates. By using this approach with a ferricyanide/ferrocyanide half-cell reaction, we developed a vitamin C fuel cell without precious metals. This fuel cell achieves an open circuit voltage of ∼950 mV, a peak power density of ∼97 mW cm⁻², and a peak current density of ∼215 mA cm⁻². Impressively, its performance is about 1.7 times better than traditional precious metal-based DLFCs. This highlights the potential of substrate ligand chemistry in the creation of sustainable DLFCs for efficient energy conversion.

Keywords: molecular electrocatalysts, vitamin C fuel cell, proton charge assembly, ferricyanide half-cell chemistry

Procedia PDF Downloads 19
4874 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method

Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine

Abstract:

This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.

Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR

Procedia PDF Downloads 62
4873 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.

Keywords: grinding, MQL, precision grinding, Taguchi optimization, titanium alloy

Procedia PDF Downloads 275
4872 A Wireless Sensor System for Continuous Monitoring of Particulate Air Pollution

Authors: A. Yawootti, P. Intra, P. Sardyoung, P. Phoosomma, R. Puttipattanasak, S. Leeragreephol, N. Tippayawong

Abstract:

The aim of this work is to design, develop and test the low-cost implementation of a particulate air pollution sensor system for continuous monitoring of outdoors and indoors particulate air pollution at a lower cost than existing instruments. In this study, measuring electrostatic charge of particles technique via high efficiency particulate-free air filter was carried out. The developed detector consists of a PM10 impactor, a particle charger, a Faraday cup electrometer, a flow meter and controller, a vacuum pump, a DC high voltage power supply and a data processing and control unit. It was reported that the developed detector was capable of measuring mass concentration of particulate ranging from 0 to 500 µg/m3 corresponding to number concentration of particulate ranging from 106 to 1012 particles/m3 with measurement time less than 1 sec. The measurement data of the sensor connects to the internet through a GSM connection to a public cellular network. In this development, the apparatus was applied the energy by a 12 V, 7 A internal battery for continuous measurement of about 20 hours. Finally, the developed apparatus was found to be close agreement with the import standard instrument, portable and benefit for air pollution and particulate matter measurements.

Keywords: particulate, air pollution, wireless communication, sensor

Procedia PDF Downloads 366
4871 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 90
4870 High-Resolution Surface Temperature Changes for Portugal Under CMIP6 Future Climate Scenarios

Authors: David Carvalho

Abstract:

Future changes in the mean, maximum and minimum temperature in continental Portugal were investigated using high-resolution future climate projections based on the latest IPCC AR6 CMIP6 climate scenarios. The results show that the mean, maximum and minimum temperatures are projected to increase substantially in all of continental Portugal, particularly in the south-central inland regions. For the near-term future (2046-2065 period), SSP3-7.0 is the future climate scenario that projects higher increases of around 1 ºC, 1.5 ºC and 2 ºC for the daily mean, maximum and minimum temperatures, respectively. For the long-term future (2081-2100 period), the projected warming is higher, particularly under the SSP5-8.5 future climate scenario with projected warmings of 3 ºC, 3.5 ºC and 2.5 ºC for the daily mean, maximum and minimum temperatures, respectively. Occurrences of hot days (mean temperature above 30 ºC), very hot days (maximum temperature above 40 ºC) and tropical nights (minimum temperature above 20 ºC) are all projected to increase up to 35-40, 12-15 and 50 more days per year, respectively, mainly in the interior areas of Portugal. Oppositely, the occurrence of frost days is projected to decrease in practically all mountainous areas in Portugal. These results show a clear tendency of a significant increase in the surface temperatures and frequency of occurrence of extreme temperature episodes in continental Portugal, which can have severe impacts on the population, environment, economy and vital human activities such as agriculture.

Keywords: climate change, global warming, CMIP6, Portugal

Procedia PDF Downloads 32
4869 Adhesion of Sputtered Copper Thin Films Deposited on Flexible Substrates

Authors: Rwei-Ching Chang, Bo-Yu Su

Abstract:

Adhesion of copper thin films deposited on polyethylene terephthAdhesion of copper thin films deposited on polyethylene terephthalate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.alate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.

Keywords: flexible substrate, sputtering, adhesion, copper thin film

Procedia PDF Downloads 130
4868 Physicochemical Properties of Soy Protein Isolate (SPI): Starch Conjugates Treated by Sonication

Authors: Gulcin Yildiz, Hao Feng

Abstract:

In recent years there is growing interested in using soy protein because of several advantages compared to other protein sources, such as high nutritional value, steady supply, and low cost. Soy protein isolate (SPI) is the most refined soy protein product. It contains 90% protein in a moisture-free form and has some desirable functionalities. Creating a protein-polysaccharide conjugate to be the emulsifying agent rather than the protein alone can markedly enhance its stability. This study was undertaken to examine the effects of ultrasound treatments on the physicochemical properties of SPI-starch conjugates. The soy protein isolate (SPI, Pro-Fam® 955) samples were obtained from the Archer Daniels Midland Company. Protein concentrations were analyzed by the Bardford method using BSA as the standard. The volume-weighted mean diameters D [4,3] of protein–polysaccharide conjugates were measured by dynamic light scattering (DLS). Surface hydrophobicity of the conjugates was measured by using 1-anilino-8-naphthalenesulfonate (ANS) (Sigma-Aldrich, St. Louis, MO, USA). Increasing the pH from 2 to 12 resulted in increased protein solubility. The highest solubility was 69.2% for the sample treated with ultrasonication at pH 12, while the lowest (9.13%) was observed in the Control. For the other pH conditions, the protein solubility values ranged from 40.53 to 49.65%. The ultrasound treatment significantly decreased the particle sizes of the SPI-modified starch conjugates. While the D [4,3] for the Control was 731.6 nm, it was 293.7 nm for the samples treated by sonication at pH 12. The surface hydrophobicity (H0) of SPI-starch at all pH conditions were significantly higher than those in the Control. Ultrasonication was proven to be effective in improving the solubility and emulsifying properties of soy protein isolate-starch conjugates.

Keywords: particle size, solubility, soy protein isolate, ultrasonication

Procedia PDF Downloads 420
4867 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances

Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.

Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive

Procedia PDF Downloads 150
4866 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 466
4865 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 48
4864 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India

Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta

Abstract:

The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.

Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment

Procedia PDF Downloads 95
4863 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 86
4862 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 20
4861 Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures

Authors: Mabrook Saleh Amera, Prabhakarn Arunachalama, Maged N. Shaddadb, Abdulhadi Al-Qadia

Abstract:

Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution.

Keywords: photoelectrochemical, water splitting, pharmaceutical pollutants degradation, photoanodes, cocatalyst

Procedia PDF Downloads 52
4860 Bioresorbable Medicament-Eluting Grommet Tube for Otitis Media with Effusion

Authors: Chee Wee Gan, Anthony Herr Cheun Ng, Yee Shan Wong, Subbu Venkatraman, Lynne Hsueh Yee Lim

Abstract:

Otitis media with effusion (OME) is the leading cause of hearing loss in children worldwide. Surgery to insert grommet tube into the eardrum is usually indicated for OME unresponsive to antimicrobial therapy. It is the most common surgery for children. However, current commercially available grommet tubes are non-bioresorbable, not drug-treated, with unpredictable duration of retention on the eardrum to ventilate middle ear. Their functionality is impaired when clogged or chronically infected, requiring additional surgery to remove/reinsert grommet tubes. We envisaged that a novel fully bioresorbable grommet tube with sustained antibiotic release technology could address these drawbacks. In this study, drug-loaded bioresorbable poly(L-lactide-co-ε-caprolactone)(PLC) copolymer grommet tubes were fabricated by microinjection moulding technique. In vitro drug release and degradation model of PLC tubes were studied. Antibacterial property was evaluated by incubating PLC tubes with P. aeruginosa broth. Surface morphology was analyzed using scanning electron microscopy. A preliminary animal study was conducted using guinea pigs as an in vivo model to evaluate PLC tubes with and without drug, with commercial Mini Shah grommet tube as comparison. Our in vitro data showed sustained drug release over 3 months. All PLC tubes revealed exponential degradation profiles over time. Modeling predicted loss of tube functionality in water to be approximately 14 weeks and 17 weeks for PLC with and without drug, respectively. Generally, PLC tubes had less bacteria adherence, which were attributed to the much smoother tube surfaces compared to Mini Shah. Antibiotic from PLC tube further made bacteria adherence on surface negligible. They showed neither inflammation nor otorrhea after 18 weeks post-insertion in the eardrums of guinea pigs, but had demonstrated severe degree of bioresorption. Histology confirmed the new PLC tubes were biocompatible. Analyses on the PLC tubes in the eardrums showed bioresorption profiles close to our in vitro degradation models. The bioresorbable antibiotic-loaded grommet tubes showed good predictability in functionality. The smooth surface and sustained release technology reduced the risk of tube infection. Tube functional duration of 18 weeks allowed sufficient ventilation period to treat OME. Our ongoing studies include modifying the surface properties with protein coating, optimizing the drug dosage in the tubes to enhance their performances, evaluating their functional outcome on hearing after full resoption of grommet tube and healing of eardrums, and developing animal model with OME to further validate our in vitro models.

Keywords: bioresorbable polymer, drug release, grommet tube, guinea pigs, otitis media with effusion

Procedia PDF Downloads 449
4859 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid

Procedia PDF Downloads 379
4858 3D-Printing Compressible Macroporous Polymer Using Poly-Pickering-High Internal Phase Emulsions as Micromixer

Authors: Hande Barkan-Ozturk, Angelika Menner, Alexander Bismarck

Abstract:

Microfluidic mixing technology grew rapidly in the past few years due to its many advantages over the macro-scale mixing, especially the ability to use small amounts of internal volume and also very high surface-to-volume ratio. The Reynold number identify whether the mixing is operated by the laminar or turbulence flow. Therefore, mixing with very fast kinetic can be achieved by diminishing the channel dimensions to decrease Reynold number and the laminar flow can be accomplished. Moreover, by using obstacles in the micromixer, the mixing length and the contact area between the species have been increased. Therefore, the channel geometry and its surface property have great importance to reach satisfactory mixing results. Since poly(-merised) High Internal Phase Emulsions (polyHIPEs) have more than 74% porosity and their pores are connected each other with pore throats, which cause high permeability, they are ideal candidate to build a micromixer. The HIPE precursor is commonly produced by using an overhead stirrer to obtain relatively large amount of emulsion in batch process. However, we will demonstrate that a desired amount of emulsion can be prepared continuously with micromixer build from polyHIPE, and such HIPE can subsequently be employed as ink in 3D printing process. In order to produce the micromixer a poly-Pickering(St-co-DVB)HIPE with 80% porosity was prepared with modified silica particles as stabilizer and surfactant Hypermer 2296 to obtain open porous structure and after coating of the surface, the three 1/16' ' PTFE tubes to transfer continuous (CP) and internal phases (IP) and the other is to collect the emulsion were placed. Afterwards, the two phases were injected in the ratio 1:3 CP:IP with syringe dispensers, respectively, and highly viscoelastic H(M)IPE, which can be used as an ink in 3D printing process, was gathered continuously. After the polymerisation of the resultant emulsion, polyH(M)IPE has interconnected porous structure identical to the monolithic polyH(M)IPE indicating that the emulsion can be prepared constantly with poly-Pickering-HIPE as micromixer and it can be used to prepare desired pattern with a 3D printer. Moreover, the morphological properties of the emulsion can be adjustable by changing flow ratio, flow speed and structure of the micromixer.

Keywords: 3D-Printing, emulsification, macroporous polymer, micromixer, polyHIPE

Procedia PDF Downloads 159
4857 Crack Size and Moisture Issues in Thermally Modified vs. Native Norway Spruce Window Frames: A Hygrothermal Simulation Study

Authors: Gregor Vidmar, Rožle Repič, Boštjan Lesar, Miha Humar

Abstract:

The study investigates the impact of cracks in surface coatings on moisture content (MC) and related fungal growth in window frames made of thermally modified (TM) and native Norway spruce using hygrothermal simulations for Ljubljana, Slovenia. Comprehensive validation against field test data confirmed the numerical model's predictions, demonstrating similar trends in MC changes over the investigated four years. Various established mould growth models (isopleth, VTT, bio hygrothermal) did not appropriately reflect differences between the spruce types because they do not consider material moisture content, leading to the main conclusion that TM spruce is more resistant to moisture-related issues. Wood's MC influences fungal decomposition, typically occurring above 25% - 30% MC, with some fungi growing at lower MC under conducive conditions. Surface coatings cannot wholly prevent water penetration, which becomes significant when the coating is damaged. This study investigates the detrimental effects of surface coating cracks on wood moisture absorption, comparing TM spruce and native spruce window frames. Simulations were conducted for undamaged and damaged coatings (from 1 mm to 9 mm wide cracks) on window profiles as well as for uncoated profiles. Sorption curves were also measured up to 95% of the relative humidity. MC was measured in the frames exposed to actual climatic conditions and compared to simulated data for model validation. The study utilizes a simplified model of the bottom frame part due to convergence issues with simulations of the whole frame. TM spruce showed about 4% lower MC content compared to native spruce. Simulations showed that a 3 mm wide crack in native spruce coatings for the north orientation poses significant moisture risks, while a 9 mm wide crack in TM spruce coatings remains acceptable furthermore in the case of uncoated TM spruce could be acceptable. In addition, it seems that large enough cracks may cause even worse moisture dynamics compared to uncoated native spruce profiles. The absorption curve comes out to be the far most influential parameter, and the next one is density. Existing mould growth models need to be upgraded to reflect wood material differences accurately. Due to the lower sorption curve of TM spruce, in reality, higher RH values are obtained under the same boundary conditions, which implies a more critical situation according to these mould growth models. Still, it does not reflect the difference in materials, especially under external exposure conditions. Even if different substrate categories in the isopleth and bio-hygrothermal model or different sensitivity material classes for standard and TM wood are used, it does not necessarily change the expected trends; thus, models with MC being the inherent part of the models should be introduced. Orientation plays a crucial role in moisture dynamics. Results show that for similar moisture dynamics, for Norway spruce, the crack could be about 2 mm wider on the south than on the north side. In contrast, for TM spruce, orientation isn't as important, compared to other material properties. The study confirms the enhanced suitability of TM spruce for window frames in terms of moisture resistance and crack tolerance in surface coatings.

Keywords: hygrothermal simulations, mould growth, surface coating, thermally modified wood, window frame

Procedia PDF Downloads 32
4856 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 276
4855 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 432
4854 Freeform Lens System for Collimation SERS irradiation Radiation Produced by Biolayers which Deposit on High Quality Resonant System

Authors: Iuliia Riabenko, Konstantin Beloshenko, Sergey Shulga, Valeriy Shulga

Abstract:

An optical system has been developed consisting of a TIR lens and an aspherical surface designed to collect Stokes radiation from biomolecules. The freeform material is SYLGARD-184, which provides a low level of noise associated with the luminescence of the substrate. The refractive index of SYLGARD-184 is 1.4028 for a wavelength of 632 nm, the Abbe number is 72, these material parameters make it possible to design the desired shape for the wavelength range of 640-700 nm. The system consists of a TIR lens, inside which is placed a high-quality resonant system consisting of a biomolecule and a metal colloid. This system can be described using the coupled oscillator model. The laser excitation radiation was fed through the base of the TIR lens. The sample was mounted inside the TIR lens at a distance of 8 mm from the base. As a result of Raman scattering of laser radiation, a Stokes bend appeared from the biolayer. The task of this work was that it was necessary to collect this radiation emitted at a 4π steradian angle. For this, an internal aspherical surface was used, which made it possible to defocus the beam emanating from the biolayer and direct its radiation to the borders of the TIR lens at the Brewster angle. The collated beam of Stokes radiation contains 97% of the energy scattered by the biolayer. Thus, a simple scheme was proposed for collecting and collimating the Stokes radiation of biomolecules.

Keywords: TIR lens, freeform material, raman scattering, biolayer, brewster angle

Procedia PDF Downloads 137
4853 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 134
4852 Natural Dyes in Schools. Development of Techniques From Early Childhood as a Tool for Art, Design and Sustainability

Authors: Luciana Marrone

Abstract:

Natural dyes are a great resource for today's artists and designers providing endless possibilities for design and sustainability. This research and development project focuses on the idea of making these dyeing or painting methodologies reach the widest possible range of students. The main objective is to inform and train, free of charge, teachers and students from different academic institutions, at different levels, kindergarten, primary, secondary, tertiary and university. In this research and dissemination project, in the first instance, institutions from Argentina, Chile, Uruguay, Mexico, Spain, Italy, Colombia, Paraguay, Venezuela, Brazil and Australia joined the project, reaching the grassroots of education from the very beginning. Natural dyes will become part of everyday life for more people, achieving their own colors for art, textiles or any other application. The knowledge of the techniques and resources of the student a fundamental tool, sustainable and opens endless possibilities even in places or homes with few economic resources, thus achieving that natural dyes are not only part of the world of designers but also that they are incorporated from the basics and can thus become a resource applicable in different areas even in places with few economic or development possibilities.

Keywords: art, education, natural dyes, sustainability, textile design.

Procedia PDF Downloads 84
4851 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle

Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian

Abstract:

Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.

Keywords: docking, gold nanoparticle, molecular simulation, plasmin

Procedia PDF Downloads 470
4850 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer

Authors: Rehan Siddiqui, Brendan Quine

Abstract:

The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.

Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases

Procedia PDF Downloads 333
4849 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy

Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak

Abstract:

In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.

Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes

Procedia PDF Downloads 285
4848 Water Sources in 3 Local Municipalities of O. R. Tambo District Municipality, South Africa: A Comparative Study

Authors: Betek Cecilia Kunseh, Musampa Christopher

Abstract:

Despite significant investment and important progress, access to safe potable water continues to be one of the most pressing challenges for rural communities in O R Tambo District Municipality. This is coupled with the low income of most residents and government's policy which obliges municipalities to supply basic water usually set at 6 kilolitres per month to each household free of charge. During the research, data was collected from three local municipalities of O. R. Tambo, i.e. King Sabata Dalindyebo, Mhlontlo and Ingquza Hill local municipalities. According to the result, significant differences exist between the sources of water in the different local municipalities from which data was collected. The chi square was use to calculated the differences between the sources of water and the calculated critical value of the District Municipality was 18.77 which is more than the stipulated critical value of 3.84. More people in Mhlontlo Local Municipality got water from the taps while a greater percentage of households in King Sataba Dalindyebo and Ingquza hill local municipalities got their water from the natural sources. 77% of the sample population complained that there have been no improvements in water provision because they still get water from natural sources and even the remaining 33% that were getting water from the taps still have to depend on natural sources because the taps are most of the time broken and it takes a long time to fix them.

Keywords: availability, water, sources, supply

Procedia PDF Downloads 339