Search results for: real incentives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: real incentives

3209 Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example

Authors: Peng Lu, Liu Ting

Abstract:

Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry.

Keywords: tomorrow group, internal capital market, related-party transactions, Baotou tomorrow technology Co., LTD

Procedia PDF Downloads 141
3208 Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing

Authors: Ho Jeong Jin, Chang Won Seo, Choon Sik Cho, Bong Yong Choi, Kwang Kyun Na, Sang Rok Lee

Abstract:

In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing.

Keywords: compressive sensing, LFM-FSK radar, radar signal processing, sparse algorithm

Procedia PDF Downloads 488
3207 VTOL-Fw Mode-Transitioning UAV Design and Analysis

Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu

Abstract:

In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.

Keywords: aircraft design, linear analysis, mode transitioning control, UAV

Procedia PDF Downloads 399
3206 Traditional Chinese Medicine Treatment for Coronary Heart Disease: a Meta-Analysis

Authors: Yuxi Wang, Xuan Gao

Abstract:

Traditional Chinese medicine has been used in the treatment of coronary heart disease (CHD) for centuries, and in recent years, the research data on the efficacy of traditional Chinese medicine through clinical trials has gradually increased to explore its real efficacy and internal pharmacology. However, due to the complexity of traditional Chinese medicine prescriptions, the efficacy of each component is difficult to clarify, and pharmacological research is challenging. This study aims to systematically review and clarify the clinical efficacy of traditional Chinese medicine in the treatment of coronary heart disease through a meta-analysis. Based on PubMed, CNKI database, Wanfang data, and other databases, eleven randomized controlled trials and 1091 CHD subjects were included. Two researchers conducted a systematic review of the papers and conducted a meta-analysis supporting the positive therapeutic effect of traditional Chinese medicine in the treatment of CHD.

Keywords: coronary heart disease, Chinese medicine, treatment, meta-analysis

Procedia PDF Downloads 129
3205 Multi-Subpopulation Genetic Algorithm with Estimation of Distribution Algorithm for Textile Batch Dyeing Scheduling Problem

Authors: Nhat-To Huynh, Chen-Fu Chien

Abstract:

Textile batch dyeing scheduling problem is complicated which includes batch formation, batch assignment on machines, batch sequencing with sequence-dependent setup time. Most manufacturers schedule their orders manually that are time consuming and inefficient. More power methods are needed to improve the solution. Motivated by the real needs, this study aims to propose approaches in which genetic algorithm is developed with multi-subpopulation and hybridised with estimation of distribution algorithm to solve the constructed problem for minimising the makespan. A heuristic algorithm is designed and embedded into the proposed algorithms to improve the ability to get out of the local optima. In addition, an empirical study is conducted in a textile company in Taiwan to validate the proposed approaches. The results have showed that proposed approaches are more efficient than simulated annealing algorithm.

Keywords: estimation of distribution algorithm, genetic algorithm, multi-subpopulation, scheduling, textile dyeing

Procedia PDF Downloads 302
3204 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image

Authors: Lan Du, Yan Wang, Hui Dai

Abstract:

Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.

Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation

Procedia PDF Downloads 393
3203 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 117
3202 Parallel Tracking and Mapping of a Fleet of Quad-Rotor

Authors: M. Bazin, I. Bouguir, D. Combe, V. Germain, G. Lassade

Abstract:

The problem of managing a fleet of quad-rotor drones in a completely unknown environment is analyzed in the present paper. This work is following the footsteps of other studies about how should be managed the movements of a swarm of elements that have to stay gathered throughout their activities. In this paper we aim to demonstrate the limitations of a system where absolutely all the calculations and physical movements of our elements are done by one single external element. The strategy of control is an adaptive approach which takes into account the explored environment. This is made possible thanks to a set of command rules which can guide the drones through various missions with defined goal. The result of the mission is independent of the nature of environment and the number of drones in the fleet. This strategy is based on a simultaneous usage of different data: obstacles positions, real-time positions of all drones and relative positions between the different drones. The present work is made with the Robot Operating System and used several open-source projects on localization and usage of drones.

Keywords: cooperative guidance, distributed control, unmanned aerial vehicle, obstacle avoidance

Procedia PDF Downloads 307
3201 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 255
3200 Using A Blockchain-Based, End-to-End Encrypted Communication System Between Mobile Terminals to Improve Organizational Privacy

Authors: Andrei Bogdan Stanescu, Robert Stana

Abstract:

Creating private and secure communication channels between employees has become a critical aspect in order to ensure organizational integrity and avoid leaks of sensitive information. With the widespread use of modern methods of disrupting communication between users, real use-cases of advanced encryption mechanisms have emerged to avoid cyber-attackers that are willing to intercept private conversations between critical employees in an organization. This paper aims to present a custom implementation of a messaging application named “Whisper” that uses end-to-end encryption (E2EE) mechanisms and blockchain-related components to protect sensitive conversations and mitigate the risks of information breaches inside organizations. The results of this research paper aim to expand the areas of applicability of E2EE algorithms and integrations with private blockchains in chat applications as a viable method of enhancing intra-organizational communication privacy.

Keywords: end-to-end encryption, mobile communication, cryptography, communication security, data privacy

Procedia PDF Downloads 95
3199 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 351
3198 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location

Authors: I. Touaїbia, E. Azzag, O. Narjes

Abstract:

Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.

Keywords: distribution networks, fault location, TDR, underground cable

Procedia PDF Downloads 548
3197 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem

Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury

Abstract:

Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.

Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem

Procedia PDF Downloads 369
3196 The Determination of Operating Reserve in Small Power Systems Based on Reliability Criteria

Authors: H. Falsafi Falsafizadeh, R. Zeinali Zeinali

Abstract:

This paper focuses on determination of total Operating Reserve (OR) level, consisting of spinning and non-spinning reserves, in two small real power systems, in such a way that the system reliability indicator would comply with typical industry standards. For this purpose, the standard used by the North American Electric Reliability Corporation (NERC) – i.e., 1 day outage in 10 years or 0.1 days/year is relied. The simulation of system operation for these systems that was used for the determination of total operating reserve level was performed by industry standard production simulation software in this field, named PLEXOS. In this paper, the operating reserve which meets an annual Loss of Load Expectation (LOLE) of approximately 0.1 days per year is determined in the study year. This reserve is the minimum amount of reserve required in a power system and generally defined as a percentage of the annual peak.

Keywords: frequency control, LOLE, operating reserve, system reliability

Procedia PDF Downloads 347
3195 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.

Keywords: indoor positioning system, wireless sensor networks, measurement delay

Procedia PDF Downloads 487
3194 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 165
3193 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 395
3192 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour

Abstract:

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming

Procedia PDF Downloads 460
3191 The Applications of Aritificial Intelligence to the Predictions of Processing-Microstructure-Property Relationships

Authors: Fei Peng, Hai Xiao, Rajendra K. Bordia, Jianhua Tong, Dongsheng Li

Abstract:

the report high-throughput, ultra-fast laser sintering of alumina sample array and characterization of sample units’ microstructure and hardness, as a fast exploration of laser processing parameters, microstructure, and property. These experimental data were used to train machine-learning (ML) models. Accurate ML predictions were demonstrated for the processing-microstructure-property relationship, specifically in (1) prediction of the microstructure of alumina under arbitrary laser power and (2) prediction of the expected microstructure from the desired hardness. An independent neural network was developed and showed that ML-predicted microstructure had less than 10% error from real ones, in terms of projected hardness. To monitor the microstructure during laser sintering, we demonstrated an ML model that can instantaneously predict ceramic’s microstructure at the laser spot, based on the laser spot brightness. The ML model can generate more than 10 predictions per second, and the error in average grain size was less than 5% from the experimental observations.

Keywords: machine learning, additive manufacturing, ceramics, microstructure, hardness

Procedia PDF Downloads 5
3190 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education

Authors: Lauren G. Coggins

Abstract:

Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.

Keywords: education, healthcare-associated infections, infection, nursing, prevention

Procedia PDF Downloads 120
3189 Optimal Hedging of a Portfolio of European Options in an Extended Binomial Model under Proportional Transaction Costs

Authors: Norm Josephy, Lucy Kimball, Victoria Steblovskaya

Abstract:

Hedging of a portfolio of European options under proportional transaction costs is considered. Our discrete time financial market model extends the binomial market model with transaction costs to the case where the underlying stock price ratios are distributed over a bounded interval rather than over a two-point set. An optimal hedging strategy is chosen from a set of admissible non-self-financing hedging strategies. Our approach to optimal hedging of a portfolio of options is based on theoretical foundation that includes determination of a no-arbitrage option price interval as well as on properties of the non-self-financing strategies and their residuals. A computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies is developed. Applicability of our approach is demonstrated using both simulated data and real market data.

Keywords: extended binomial model, non-self-financing hedging, optimization, proportional transaction costs

Procedia PDF Downloads 257
3188 Northern Istanbul Urban Infrastructure Projects: A Critical Account on the Environmental, Spatial, Social and Economical Impacts

Authors: Evren Aysev Denec

Abstract:

As an urban settlement dating as early as 8000 years and the capital for Byzantine and Ottoman empires; İstanbul has been a significant global city throughout history. The most drastic changes in the macro form of Istanbul have taken place in the last seven decades; starting from 1950’s with rapid industrialization and population growth; pacing up after the 1980’s with the efforts of integration to the global capitalist system; reaching to a climax in the 2000’s with the adaptation of a neoliberal urban regime. Today, the rate of urbanization together with land speculation and real estate investment has been growing enormously. Every inch of urban land is conceptualized as a commodity to be capitalized. This neoliberal mindset has many controversial implementations, from the privatization of public land to the urban transformation of historic neighbourhoods and consumption of natural resources. The planning decisions concerning the city have been mainly top down initiations; conceptualising historical, cultural and natural heritage as commodities to be capitalised and consumed in favour of creating rent value. One of the most crucial implementations of this neoliberal urban regime is the project of establishing a ‘new city’ around northern Istanbul; together with a number of large-scale infrastructural projects such as the Third Bosporus Bridge; a new highway system, a Third Airport Project and a secondary Bosporus project called the ‘Canal Istanbul’. Urbanizing northern Istanbul is highly controversial as this area consists of major natural resources of the city; being the northern forests, water supplies and wildlife; which are bound to be destroyed to a great extent following the implementations. The construction of the third bridge and the third airport has begun in 2013, despite environmental objections and protests. Over five hundred thousand trees are planned be cut for solely the construction of the bridge and the Northern Marmara Motorway. Yet the real damage will be the urbanization of the forest area; irreversibly corrupting the natural resources and attracting millions of additional population towards Istanbul. Furthermore, these projects lack an integrated planning scope as the plans prepared for Istanbul are constantly subjected to alterations forced by the central government. Urban interventions mentioned above are executed despite the rulings of Istanbul Environmental plan, due to top down planning decisions. Instead of an integrated action plan that prepares for the future of the city, Istanbul is governed by partial plans and projects that are issued by a profit based agenda; supported by legal alterations and laws issued by the central government. This paper aims to discuss the ongoing implementations with regards to northern Istanbul; claiming that they are not merely infrastructural interventions but parts of a greater neoliberal urbanization strategy. In the course of the study, firstly a brief account on the northern forests of Istanbul will be presented. Then, the projects will be discussed in detail, addressing how the current planning schemes deal with the natural heritage of the city. Lastly, concluding remarks on how the implementations could affect the future of Istanbul will be presented.

Keywords: Istanbul, urban design, urban planning, natural resources

Procedia PDF Downloads 205
3187 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 329
3186 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 244
3185 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers

Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen

Abstract:

Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.

Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning

Procedia PDF Downloads 310
3184 A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension

Authors: Shoeb A. Adeel, Shashant Anand, Vivek Paul, Dinesh, Suraj, Roshan

Abstract:

The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations.

Keywords: airfoil, CFD, MAV, flight performance, endurance, climb, lift, drag

Procedia PDF Downloads 500
3183 The Usage of Thermal Regions as a Air Navigation Rule for Unmanned Aircraft Systems

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier .One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drug. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2-3 NM, exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: unmanned aircraft systems, Air4All, thermals, gliders

Procedia PDF Downloads 403
3182 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 329
3181 Designing User Interfaces for Just in Time Enterprise Solution

Authors: Romi Dey

Abstract:

Introduction: One of the most important criteria for technology to sustain and grow is through it’s elaborate and intuitive design methodology and design thinking. Designing for enterprise applications that cater to Just in Time Technology is one of the most challenging and detailed processes any User Experience Designer would come across. Description: The basic principles of Design, when applied to tailor to these technologies, creates an immense challenge and that’s how a set of redefined and revised design principles that can be applied to designing any Just In Time manufacturing solution. Findings: The thorough process of understanding the end user, their existing pain points which they’ve faced in the real world, their responsibilities and expectations, the core needs and last but not the least the demands, creates havoc nurturing of the design methodologies for the Just in Time solutions. With respect to the business aspect, design and design principles play a strong role in any form of innovation. Conclusion: Innovation and knowledge about the latest technologies are the keywords in the manufacturing industry. It becomes crucial for the product development team to be precise in their understanding of the technology and being sure of end users expectation.

Keywords: design thinking, enterprise application, Just in Time, user experience design

Procedia PDF Downloads 175
3180 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification

Procedia PDF Downloads 343