Search results for: ceramic hollow fiber membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2773

Search results for: ceramic hollow fiber membrane

373 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 274
372 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: biopolymers, fuel cells, nanocomposite, methanol crossover

Procedia PDF Downloads 118
371 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis

Procedia PDF Downloads 147
370 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization

Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.

Abstract:

The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.

Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates

Procedia PDF Downloads 69
369 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 255
368 Protection and Immune Responses of DNA Vaccines Targeting Virulence Factors of Streptococcus iniae in Nile Tilapia (Oreochromis niloticus)

Authors: Pattanapon Kayansamruaj, Ha Thanh Dong, Nopadon Pirarat, Channarong Rodkhum

Abstract:

Streptococcus iniae (SI) is a devastating pathogenic bacteria causing heavy mortality in farmed fish. The application of commercialized bacterin vaccine has been reported failures as the outbreaks of the new serotype of SI were emerged in farms after vaccination and subsequently caused severe losses. In the present study, we attempted to develop effective DNA vaccines against SI infection using Nile tilapia (Oreochromis niloticus) as an animal model. Two monovalent DNA vaccines were constructed by the insertion of coding sequences of cell wall-associated virulence factors-encoding genes, comprised of eno (α-enolase) and mtsB (hydrophobic membrane protein), into cytomegalovirus expression vector (pCI-neo). In the animal trial, 30-g Nile tilapia were injected intramuscularly with 15 µg of each vaccine (mock vaccine group was injected by naked pCI-neo) and maintained for 35 days prior challenging with pathogenic SI at the dosage of 107 CFU/fish. At 13 days post-challenge, the relative percent survival of pEno, pMtsB and mock vaccine were 57%, 45% and 27%, respectively. The expression levels of immune responses-associated genes, namely, IL1β, TNF-α, TGF-β, COX2, IL-6, IL-12 and IL-13, were investigated from the spleen of experimental animal at 7 days post-vaccination (PV) and 7 days post-challenge (PC) using quantitative RT-PCR technique. Generally, at 7 days PV, the pEno vaccinated group exhibited highest level of up-regulation (1.7 to 2.9 folds) of every gene, but TGF-β, comparing to pMtsB and mock vaccine groups. However, at 7 days PC, pEno group showed significant up-regulation (1.4 to 8.5 folds) of immune-related genes as similar as mock vaccine group, while pMtsB group had lowest level of up-regulation (0.7 to 3.3 folds). Summarily, this study indicated that the pEno and pMtsB vaccines could elicit the immune responses of the fish and the magnitude of gene expression at 7 days PV was also consistent with the protection level conferred by the vaccine.

Keywords: gene expression, DNA vaccine, Nile tilapia, Streptococcus iniae

Procedia PDF Downloads 310
367 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy

Authors: Chen Yuan, Nick Green, Stuart Blackburn

Abstract:

The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.

Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting

Procedia PDF Downloads 88
366 Effect of Mixture of Flaxseed and Pumpkin Seeds Powder on Hypercholesterolemia

Authors: Zahra Ashraf

Abstract:

Flax and pumpkin seeds are a rich source of unsaturated fatty acids, antioxidants and fiber, known to have anti-atherogenic properties. Hypercholesterolemia is a state characterized by the elevated level of cholesterol in the blood. This research was designed to study the effect of flax and pumpkin seeds powder mixture on hypercholesterolemia and body weight. Rat’s species were selected as human representative. Thirty male albino rats were divided into three groups: a control group, a CD-chol group (control diet+cholesterol) fed with 1.5% cholesterol and FP-chol group (flaxseed and pumpkin seed powder+ cholesterol) fed with 1.5% cholesterol. Flax and pumpkin seed powder mixed at proportion of (5/1) (omega-3 and omega-6). Blood samples were collected to examine lipid profile and body weight was also measured. Thus the data was subjected to analysis of variance. In CD-chol group, body weight, total cholesterol TC, triacylglycerides TG in plasma, plasma LDL-C, ratio significantly increased with a decrease in plasma HDL (good cholesterol). In FP-chol group lipid parameters and body weights were decreased significantly with an increase in HDL and decrease in LDL (bad cholesterol). The mean values of body weight, total cholesterol, triglycerides, low density lipoprotein and high density lipoproteins in FP-chol group were 240.66±11.35g, 59.60±2.20mg/dl, 50.20±1.79 mg/dl, 36.20±1.62mg/dl, 36.40±2.20 mg/dl, respectively. Flaxseed and pumpkin seeds powder mixture showed reduction in body weight, serum cholesterol, low density lipoprotein and triglycerides. While significant increase was shown in high density lipoproteins when given to hypercholesterolemic rats. Our results suggested that flax and pumpkin seed mixture has hypocholesterolemic effects which were probably mediated by polyunsaturated fatty acids (omega-3 and omega-6) present in seed mixture.

Keywords: hypercolesterolemia, omega 3 and omega 6 fatty acids, cardiovascular diseases

Procedia PDF Downloads 403
365 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 234
364 Strategies For Management Of Massive Intraoperative Airway Haemorrhage Complicating Surgical Pulmonary Embolectomy

Authors: Nicholas Bayfield, Liam Bibo, Kaushelandra Rathore, Lucas Sanders, Mark Newman

Abstract:

INTRODUCTION: Surgical pulmonary embolectomy is an established therapy for acute pulmonary embolism causing right heart dysfunction and haemodynamic instability. Massive intraoperative airway haemorrhage is a rare complication of pulmonary embolectomy. We present our institutional experience with massive airway haemorrhage complicating pulmonary embolectomy and discuss optimal therapeutic strategies. METHODS: A retrospective review of emergent surgical pulmonary embolectomy patients was undertaken. Cases complicated by massive intra-operative airway haemorrhage were identified. Intra- and peri-operative management strategies were analysed and discussed. RESULTS: Of 76 patients undergoing emergent or salvage pulmonary embolectomy, three cases (3.9%) of massive intraoperative airway haemorrhage were identified. Haemorrhage always began on weaning from cardiopulmonary bypass. Successful management strategies involved intraoperative isolation of the side of bleeding, occluding the affected airway with an endobronchial blocker, institution of veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) and reversal of anticoagulation. Running the ECMO without heparinisation allows coagulation to occur. Airway haemorrhage was controlled within 24 hours of operation in all patients, allowing re-institution of dual lung ventilation and decannulation from ECMO. One case in which positive end-expiratory airway pressure was trialled initially was complicated by air embolism. Although airway haemorrhage was controlled successfully in all cases, all patients died in-hospital for reasons unrelated to the airway haemorrhage. CONCLUSION: Massive intraoperative airway haemorrhage during pulmonary embolectomy is a rare complication with potentially catastrophic outcomes. Re-perfusion alveolar and capillary injury is the likely aetiology. With a systematic approach to management, airway haemorrhage can be well controlled intra-operatively and often resolves within 24 hours. Stopping blood flow to the pulmonary arteries and support of oxygenation by the institution of VA ECMO is important. This management has been successful in our 3 cases.

Keywords: pulmonary embolectomy, cardiopulmonary bypass, cardiac surgery, pulmonary embolism

Procedia PDF Downloads 160
363 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 372
362 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation

Authors: Medhanie Gebremedhin Gebru, Alex Schechter

Abstract:

Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².

Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation

Procedia PDF Downloads 122
361 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 96
360 H2/He and H2O/He Separation Experiments with Zeolite Membranes for Nuclear Fusion Applications

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

In future nuclear fusion reactors, tritium self-sufficiency will be ensured by tritium (3H) production via reactions between the fusion neutrons and lithium. To favor tritium breeding, a neutron multiplier must also be used. Both tritium breeder and neutron multiplier will be placed in the so-called Breeding Blanket (BB). For the European Helium-Cooled Pebble Bed (HCPB) BB concept, the tritium production and neutron multiplication will be ensured by neutron bombardment of Li4SiO4 and Be pebbles, respectively. The produced tritium is extracted from the pebbles by purging them with large flows of He (~ 104 Nm3h-1), doped with small amounts of H2 (~ 0.1 vol%) to promote tritium extraction via isotopic exchange (producing HT). Due to the presence of oxygen in the pebbles, production of tritiated water is unavoidable. Therefore, the purging gas downstream of the BB will be composed by Q2/Q2O/He (Q = 1H, 2H, 3H), with Q2/Q2O down to ppm levels, which must be further processed for tritium recovery. A two-stage continuous approach, where zeolite membranes (ZMs) are followed by a catalytic membrane reactor (CMR), has been recently proposed to fulfil this task. The tritium recovery from Q2/Q2O/He is ensured by the CMR, that requires a reduction of the gas flow coming from the BB and a pre-concentration of Q2 and Q2O to be efficient. For this reason, and to keep this stage with reasonable dimensions, ZMs are required upfront to reduce as much as possible the He flows and concentrate the Q2/Q2O species. Therefore, experimental activities have been carried out at the Tritium Laboratory Karlsruhe (TLK) to test the separation performances of different zeolite membranes for H2/H2O/He. First experiments have been performed with binary mixtures of H2/He and H2O/He with commercial MFI-ZSM5 and NaA zeolite-type membranes. Only the MFI-ZSM5 demonstrated selectivity towards H2, with a separation factor around 1.5, and H2 permeances around 0.72 µmolm-2s-1Pa-1, rather independent for feed concentrations in the range 0.1 vol%-10 vol% H2/He. The experiments with H2O/He have demonstrated that the separation factor towards H2O is highly dependent on the feed concentration and temperature. For instance, at 0.2 vol% H2O/He the separation factor with NaA is below 2 and around 1000 at 5 vol% H2O/He, at 30°C. Overall, both membranes demonstrated complementary results at equivalent temperatures. In fact, at low feed concentrations ( ≤ 1 vol% H2O/He) MFI-ZSM5 separates better than NaA, whereas the latter has higher separation factors for higher inlet water content ( ≥ 5 vol% H2O/He). In this contribution, the results obtained with both MFI-ZSM5 and NaA membranes for H2/He and H2O/H2 mixtures at different concentrations and temperatures are compared and discussed.

Keywords: nuclear fusion, gas separation, tritium processes, zeolite membranes

Procedia PDF Downloads 269
359 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates

Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer

Abstract:

The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.

Keywords: vibration, composite materials, finite element, APDL ANSYS

Procedia PDF Downloads 20
358 Performances of Ashwagandha (Withania somnifera Duanal) as Affected by Method of Planting and Source of Nutrients

Authors: Ewon Kaliyadasa, U. L. B. Jayasinghe, S. E. Peiris

Abstract:

Ashwagandha (Withania sominifera Duanal) is an important medicinal herb belongs to family Solanaceae. This plant has raised its popularity after discovering anti stress and sex stimulating properties that mainly due to the presence of biologically active alkaloid compounds. Therefore it is vital to adapt to a proper agro technological package that ensure optimum growth of ashwagandha to obtain the finest quality without degrading pharmacologically active constituents. Organic and inorganic fertilizer mixtures were combined with direct seeding and transplanting as four different treatments in this study. Tuber fresh and dry weights were recorded up to twelve months starting from two months after sowing (MAS) while shoot height, root length, number of leaves, shoot fresh and dry weights and root: shoot ratio up to 6MAS. Results revealed that growth of ashwagandha was not affected significantly by method of planting or type of fertilizer or its combinations during most of the harvests. However, tubers harvested at 6MAS recorded the highest dry tuber weight per plant in all four treatments compared to early harvests where two direct seeded treatments are the best. Chemical comparison of these two treatments, direct seeding coupled with organic and inorganic fertilizer shown that direct seeding with organic treatment recorded the highest values for alkaloid and withaferine A content with lower percentage of fiber. Further these values are in concurring with the values of commercially available tuber samples. Having considered all facts, 6MAS can be recommended as the best harvesting stage to obtain high quality tubers of ashwagandha under local conditions.

Keywords: alkaloids, direct seeding, dry tuber weight, inorganic fertilizer, organic fertilizer, transplanting, withaferine a

Procedia PDF Downloads 319
357 Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates

Authors: Qiong Tian, Lifeng Zhang, Demei Yu, Ajit D. Kelkar

Abstract:

Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs.

Keywords: boron nitride, epoxy, functionalization, prepreg, composite

Procedia PDF Downloads 415
356 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma

Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi

Abstract:

In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.

Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma

Procedia PDF Downloads 85
355 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 48
354 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 306
353 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites

Authors: Engang Wang

Abstract:

The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.

Keywords: Cu-Ag composite, magnetic field, microstructure, solidification

Procedia PDF Downloads 196
352 Uranoplasty Using Tongue Flap for Bilateral Clefts

Authors: Saidasanov Saidazal Shokhmurodovich, Topolnickiy Orest Zinovyevich, Afaunova Olga Arturovna

Abstract:

Relevance: Bilateral congenital cleft is one of the most complex forms of all clefts, which makes it difficult to choose a surgical method of treatment. During primary operations to close the hard and soft palate, there is a shortage of soft tissues and their lack during standard uranoplasty, and these factors aggravate the period of rehabilitation of patients. Materials and methods: The results of surgical treatment of children with bilateral cleft, who underwent uranoplasty using a flap from the tongue, were analyzed. The study used methods: clinical and statistical, which allowed us to solve the tasks, based on the principles of evidence-based medicine. Results and discussion: in our study, 15 patients were studied, who underwent surgical treatment in the following volume: uranoplasty using a flap from the tongue in two stages. Of these, 9 boys and 6 girls aged 2.5 to 6 years. The first stage was surgical treatment in the volume: veloplasty. The second stage was a surgical intervention in volume: uranoplasty using a flap from the tongue. In all patients, the width of the cleft ranged from 1.6-2.8 cm. All patients in this group were orthodontically prepared. Using this method, the surgeon can achieve the following results: maximum narrowing of the palatopharyngeal ring, long soft palate, complete closure of the hard palate, alveolar process, and the mucous membrane of the nasal cavity is also sutured, which creates good conditions for the next stage of osteoplastic surgery. Based on the result obtained, patients have positive results of working with a speech therapist. In all patients, the dynamics were positive without complications. Conclusions: Based on our observation, tongue flap uranoplasty is one of the effective techniques for patients with wide clefts of the hard and soft palate. The use of a flap from the tongue makes it possible to reduce the number of repeated reoperations and improve the quality of social adaptation of this group of patients, which is one of the important stages of rehabilitation. Upon completion of the stages of rehabilitation, all patients had the maximum improvement in functional, anatomical and social indicators.

Keywords: congenital cleft lips and palate, bilateral cleft, child surgery, maxillofacial surgery

Procedia PDF Downloads 99
351 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation

Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath

Abstract:

Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.

Keywords: autophagy, mitochondrial turnover, ROS, glycolysis

Procedia PDF Downloads 135
350 Utilizing Bario Rice, a Natural Red-Pigmented Rice from Sarawak, Malaysia, in the Development of Gluten-Free Bread

Authors: Macdalyna Esther Ronie, Hasmadi Mamat, Ahmad Hazim Abdul Aziz, Mohamad Khairi Zainol

Abstract:

Current trends in gluten-free food development are increasingly leaning towards the utilization of pigmented rice flour, with a particular focus on Bario Merah Sederhana (BMS), a red-pigmented rice native to Sarawak, Malaysia. This study delves into the evaluation of the nutritional, textural, and sensory attributes of gluten-free rice bread produced from a blend of BMS rice flour and potato starch. The resulting samples are denoted as F1 (100% BMS rice flour), F2 (90% BMS rice flour and 10% potato starch), F3 (80% BMS rice flour and 20% potato starch), and F4 (70% BMS rice flour and 30% potato starch). Comparatively, these gluten-free rice bread formulations exhibit higher levels of ash and crude fiber, along with lower carbohydrate content when juxtaposed with conventional wheat bread. Notably, the crude protein content of the rice bread diminishes significantly (p<0.05) as the proportion of rice flour decreases, primarily due to the higher protein content found in wheat flour. The crumb of the rice bread appears darker owing to the red pigment in the rice flour, while the crust is lighter than that of the control sample, possibly attributable to a reduced Maillard reaction. Among the various rice bread formulations, F4 stands out with the least dough and bread hardness, accompanied by the highest levels of stickiness and springiness in both dough and bread, respectively. In sensory evaluations, wheat bread garners the highest rating (p<0.05). However, within the realm of rice breads, F4 emerges as a viable and acceptable formulation, as indicated by its commendable scores in color (7.03), flavor (5.73), texture (6.03), and overall acceptability (6.18). These findings underscore the potential of BMS in the creation of gluten-free rice breads, with the formulation consisting of 70% rice flour and 30% potato starch emerging as a well-received and suitable option.

Keywords: gluten-free bread, bario rice, proximate composition, sensory evaluation

Procedia PDF Downloads 211
349 Rural Community Knowledge, Attitude and Perceptions of Consuming Dried Vegetables in Central Region of Tanzania

Authors: Radegunda Kessy, Justus Ochieng, Victor Afari-Sefa, Takemore Chagomoka, Ngoni Nenguwo

Abstract:

Vegetables are excellent sources of dietary fiber, vitamins, and minerals which constitute an indispensable constituent of diets, but in Tanzania and other Sub-Saharan African countries, they are not readily available all year round due to seasonal variations in the production cycle. Drying of vegetables is one of the traditional methods for food preservation known to man. The Dodoma and Singida regions of Tanzania are characterized by semi-arid agro-climate, thereby experiencing short seasonal supply of fresh vegetables followed by long drought in which dried vegetables become an alternative to meet high household demands. A primary survey of 244 of rural consumers was carried out to understand how knowledge, attitudes, and perceptions of rural consumers affect consumption of dried vegetables. The sample respondents were all found to be aware of open sun drying of vegetables while less than 50% of them were aware of solar-dried vegetables. Consumers were highly concerned with the hygiene, nutritional values, taste, drying method, freshness, color of dried vegetables, timely availability and easiness of cooking as important factors they consider before they purchase dried vegetables. Logit model results show that gender, income, years of consuming dried vegetables, awareness of the importance of solar dried vegetables vis-à-vis sun-dried alternatives and employment status influenced rural consumer’s decision to purchase dried vegetables. Preference on dried vegetables differs across the regions which are also important considerations for any future planned interventions. The findings imply that development partners and policymakers need to design better social marketing and promotion techniques for the enhanced adoption of solar drying technology, which will greatly improve the quality and utilization of dried vegetables by target households.

Keywords: dried vegetables, postharvest management, sun drying, solar drying

Procedia PDF Downloads 168
348 Activity of Resveratrol on the Influence of Aflatoxin B1 on the Testes of Sprague Dawley Rats

Authors: Ali D. Omur, Betul Apaydin Yildirim, Yavuz S. Saglam, Selim Comakli, Mustafa Ozkaraca

Abstract:

Twenty-eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague Dawley rats were randomly divided into 4 groups as 7 rats in each group. Aflatoxin B1 (7.5 μg/200 g), resveratrol (60 mg/kg) was administered to rats in groups other than the control group. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. The effects of aflatoxin B1 and resveratrol on spermatological, pathological and biochemical parameters were determined in rats. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters (groups: control, resveratrol, aflatoxin B1 and Afb1 + res; respectively, values of motility: 71,42 ± 0,52b, 72,85 ± 1, 48c , 60,71 ± 1,30a, 57,14 ± 2, 40a; values of viability: 63,85 ± 1,33b, 70,42 ± 2,61c, 55,00 ± 1,54a, 56,57 ± 0,89a. In terms of pathological parameters -histopathological examination- in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated, and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels (GSH-mmol/L, CAT-kU/L, GPx-U/mL, SOD-EU/mL) and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investigated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevents the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.

Keywords: Aflatoxin B1, rat, resveratrol, sperm

Procedia PDF Downloads 336
347 Effects of Malachite Green Contaminated Water on Production of Pak Choy and Chinese Convolvulus

Authors: N. Piwpuan, J. Tosalee, N. Phonkerd

Abstract:

Malachite green (MG), a synthetic dye, is used in industries and aquaculture and also disposed in the effluent. Use of wastewater in irrigation increases due to water shortage. However, wastewater containing dyes, MG, are toxic to biological systems. Therefore, effects of MG on growth of vegetables were evaluated in order to utilize dye-contaminated wastewater for irrigation. In this study, Pak choy (Brassica chinensis) and Chinese convolvulus (Ipomoea aquatica) were grown in growing material (mixture of soil, coconut fiber, and compost) for four weeks and afterward kept watering with 200 ml of tap water containing MG at the concentrations of 0 (control), 1, 2, 10, and 20 mg/L. At harvest, number of leaf and shoot and root dry weight of the treated plants were measured and compared with control. For both species, their biomass values were similar among treatments and did not differ from the control plants (dry weight were 0.6-1.0 and 1.1-1.7 g/plant for B. chinensis and I. aquatica, respectively). B. chinensis treated with 2, 10, and 20 mg/L of MG produced lower number of new leaf and had smaller and shorter leaf compared to control and treatment of 1 mg/L. These results indicate the different responses between plant species, which B. chinensis is more sensitive to contaminant compared to I. aquatica. There was no sign of MG and leucomalachite green (LMG) detected in root and shoot tissues of plants treated with MG at 20 mg/L, tested by thin layer chromatography. After plant harvest, toxicity of the growing material from all treatments was tested on mung beans. Percent germination (83-97%), seedling fresh weight (0.3-0.5 g/plant), and shoot length (11-12.5 cm) were similar to the control. These indicated that contaminant in growing material did not pose detrimental effect on mung beans. Based on these results, the water contaminated with low concentration of MG, such as discharge from aquaculture, may serve as ferti-irrigation water to compensate water shortage.

Keywords: ferti-irrigation, soil toxicity, triphenylmethane dye, wastewater reuse

Procedia PDF Downloads 182
346 Performance Evaluation of Composite Beam under Uniform Corrosion

Authors: Ririt Aprilin Sumarsono

Abstract:

Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.

Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion

Procedia PDF Downloads 265
345 Designing of Oat Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers

Authors: Gramza-Michalowska Anna, Skrety Joanna, Anna Zywica, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef

Abstract:

Background: Modern consumer highly appreciates the positive influence of consumed products on well-being and overall health. High acceptance of new food is a result of intensified research showing many proofs confirming that food offers significant prophylactic and therapeutic potential, next to its basic nutritional function. Objective: Proposition of the technology of unsweetened oat drinks enriched with plant extracts for pro-health oriented individuals. We investigated the effects of selected plant extracts addition on antioxidative capacity and consumer’s acceptance of drinks as representative of all day diet product. Methods: The analysis of the basic composition and antioxidant properties of the drinking product was conducted. Basic composition included protein, lipids and fiber content. Antioxidant capacity of drink was evaluated with use radical scavenging methods (DPPH, ABTS), ORAC value and FRAP. Proposed drink as new product was also characterized with sensory analysis, which included color, aroma, taste, consistency and overall acceptance. Results: Results showed that addition of plant extracts into a oat drink allowed to enhance its antioxidant potential and influenced significantly its sensory values. The preferred composition and properties of designed beverage permit claim that it can have a positive impact on the health of the consumers. Conclusion: Designed oat drink would be an answer for pro-healthy life style of the consumers. Results showed that product with plant extracts addition would be accepted by the consumers and because of its antioxidative potential could be an important factor in prevention of free radicals influence on human organism.

Keywords: phytonutrients, pro-health, well-being, antioxidant potential, sensory value

Procedia PDF Downloads 324
344 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity

Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam

Abstract:

The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistance

Keywords: antibacterial, bioreduction, nanoparticles, surfactant

Procedia PDF Downloads 216