Search results for: root uptake models
5982 Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus
Authors: Nguyen Cao Nguyen, Krasimir I. Ivanov, Penka S. Zapryanova
Abstract:
The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.Keywords: Phyllanthus amarus, Zinc, Micro and macro elements, foliar fertilizer
Procedia PDF Downloads 1515981 Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress
Authors: Kashif Jaeel, Bingru Huang
Abstract:
Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species.Keywords: rhizobacteria, grass, heat, plant metabolism, soil bacteria
Procedia PDF Downloads 675980 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling
Authors: Thandeka Y. S. Jwara, Paul Musonge
Abstract:
Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization
Procedia PDF Downloads 1435979 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor
Authors: Purnendu Bose, Jyoti Kainthola
Abstract:
Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.Keywords: nutrients, algae, photo, bioreactor
Procedia PDF Downloads 2135978 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview
Authors: Syed Ali Shahbaz Shah
Abstract:
In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.Keywords: asphaltic roads, asphalt binder, distress, raveling
Procedia PDF Downloads 1165977 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 535976 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 1125975 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.Keywords: vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction
Procedia PDF Downloads 1355974 The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D
Authors: Xiyue Wang, Shaoning Yan
Abstract:
Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design.Keywords: visualization, hydrological and hydraulic model, Autodesk Civil 3D, urban river
Procedia PDF Downloads 2975973 Effects of Incident Angle and Distance on Visible Light Communication
Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim
Abstract:
Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.Keywords: visible light communication, incident angle, optical gain, light emitting diode
Procedia PDF Downloads 3355972 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4385971 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2995970 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware
Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.Keywords: digital forensic, detection, eradication, targeted attack, malware
Procedia PDF Downloads 2755969 Prediction of Fillet Weight and Fillet Yield from Body Measurements and Genetic Parameters in a Complete Diallel Cross of Three Nile Tilapia (Oreochromis niloticus) Strains
Authors: Kassaye Balkew Workagegn, Gunnar Klemetsdal, Hans Magnus Gjøen
Abstract:
In this study, the first objective was to investigate whether non-lethal or non-invasive methods, utilizing body measurements, could be used to efficiently predict fillet weight and fillet yield for a complete diallel cross of three Nile tilapia (Oreochromis niloticus) strains collected from three Ethiopian Rift Valley lakes, Lakes Ziway, Koka and Chamo. The second objective was to estimate heritability of body weight, actual and predicted fillet traits, as well as genetic correlations between these traits. A third goal was to estimate additive, reciprocal, and heterosis effects for body weight and the various fillet traits. As in females, early sexual maturation was widespread, only 958 male fish from 81 full-sib families were used, both for the prediction of fillet traits and in genetic analysis. The prediction equations from body measurements were established by forward regression analysis, choosing models with the least predicted residual error sums of squares (PRESS). The results revealed that body measurements on live Nile tilapia is well suited to predict fillet weight but not fillet yield (R²= 0.945 and 0.209, respectively), but both models were seemingly unbiased. The genetic analyses were carried out with bivariate, multibreed models. Body weight, fillet weight, and predicted fillet weight were all estimated with a heritability ranged from 0.23 to 0.28, and with genetic correlations close to one. Contrary, fillet yield was only to a minor degree heritable (0.05), while predicted fillet yield obtained a heritability of 0.19, being a resultant of two body weight variables known to have high heritability. The latter trait was estimated with genetic correlations to body weight and fillet weight traits larger than 0.82. No significant differences among strains were found for their additive genetic, reciprocal, or heterosis effects, while total heterosis effects were estimated as positive and significant (P < 0.05). As a conclusion, prediction of prediction of fillet weight based on body measurements is possible, but not for fillet yield.Keywords: additive, fillet traits, genetic correlation, heritability, heterosis, prediction, reciprocal
Procedia PDF Downloads 1885968 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1365967 Polysaccharide-Based Oral Delivery Systems for Site Specific Delivery in Gastro-Intestinal Tract
Authors: Kaarunya Sampathkumar, Say Chye Joachim Loo
Abstract:
Oral delivery is regarded as the facile method for the administration of active pharmaceutical ingredients (API) and drug carriers. In an initiative towards sustainable nanotechnology, an oral nano-delivery system has been developed that is made entirely of food-based materials and can also act as a site-specific delivery device depending on the stimulus encountered in different parts of the gastrointestinal tract (GIT). The delivery system has been fabricated from food grade polysaccharide materials like chitosan and starch through electrospraying technique without the use of any organic solvents. A nutraceutical extracted from an Indian medicinal plant, has been loaded into the nano carrier to test its efficacy in encapsulation and stimuli based release of the active ingredient. The release kinetics of the nutraceutical from the carrier was evaluated in simulated gastric, intestinal and colonic fluid and was found to be triggered both by the enzymes and the pH in each part of the intestinal tract depending on the polysaccharide being used. The toxicity of the nanoparticles on the intestinal epithelial cells was tested and found to be relatively safe for up to 24 hours at a concentration of 0.2 mg/mL with cellular uptake also being observed. The developed nano carrier thus serves as a promising delivery vehicle for targeted delivery to different parts of the GIT with the inherent conditions of the GIT itself acting as the stimulus. In addition, being fabricated from food grade materials, the carrier could be potentially used for the targeted delivery of nutrients through functional foods.Keywords: bioavailability, chitosan, delivery systems, encapsulation
Procedia PDF Downloads 2135966 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran
Authors: Azar Khodabakhshi, Elham Bolandnazar
Abstract:
Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.Keywords: crop yield, energy, neuro-fuzzy method, strawberry
Procedia PDF Downloads 3815965 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence
Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej
Abstract:
In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction
Procedia PDF Downloads 1055964 A System Dynamics Approach to Exploring Personality Traits in Young Children
Authors: Misagh Faezipour
Abstract:
System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model
Procedia PDF Downloads 965963 Economic Impact of a Distribution Company under Power System Restructuring
Authors: Safa’ Abdelkarim Hammad
Abstract:
The electrical power system is one of the main parts of the nation's infrastructure, and the availability and cost of electricity are critical factors in industrial competitiveness and strategy. Restructuring of the electricity supply industries is a very complex exercise based on national energy strategies and policies, macroeconomic developments, and national conditions, and its application varies from country to country. Electricity regulation of natural monopolies is a challenging task. Regulators face the problem of providing appropriate incentives for improvement of efficiency. Incentive regulation is often considered as an efficient regulatory tool to handle the problem, and it is widely applied in several countries. However, the exact regulation methodologies differ from one country to another. Network quantitative reliability evaluation is an essential factor with regard to the quality of supply. The main factors used to judge the reliability of supply is measured by the number and duration of interruptions experienced by customers. Several indicators are used to evaluate reliability in distribution networks. This paper addresses the impact of incentive regulation and performance benchmarking in the field of electricity distribution in Jordan. The theory of efficiency measurement and the most common models; NCSQS and DEA models are presented.Keywords: incentive regulations, reliability, restructuring, Tarrif
Procedia PDF Downloads 1225962 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 85961 Lessons Learned in Developing a Clinical Information System and Electronic Health Record (EHR) System That Meet the End User Needs and State of Qatar's Emerging Regulations
Authors: Darshani Premaratne, Afshin Kandampath Puthiyadath
Abstract:
The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly, the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned. The Government of Qatar is taking active steps in improving quality of health care industry in the state of Qatar. In this initiative development and market introduction of Clinical Information System and Electronic Health Record (EHR) system are proved to be a highly challenging process. Along with an organization specialized on EHR system development and with the blessing of Health Ministry of Qatar the process of introduction of EHR system in Qatar healthcare industry was undertaken. Initially a market survey was carried out to understand the requirements. Secondly the available government regulations, needs and possible upcoming regulations were carefully studied before deployment of resources for software development. Sufficient flexibility was allowed to cater for both the changes in the market and the regulations. As the first initiative a system that enables integration of referral network where referral clinic and laboratory system for all single doctor (and small scale) clinics was developed. Setting of isolated single doctor clinics all over the state to bring in to an integrated referral network along with a referral hospital need a coherent steering force and a solid top down framework. This paper discusses about the lessons learned in developing, in obtaining approval of the health ministry and in introduction to the industry of the single doctor referral network along with an EHR system. It was concluded that development of this nature required continues balance between the market requirements and upcoming regulations. Further accelerating the development based on the emerging needs, implementation based on the end user needs while tallying with the regulations, diffusion, and uptake of demand-driven and evidence-based products, tools, strategies, and proper utilization of findings were equally found paramount in successful development of end product. Development of full scale Clinical Information System and EHR system are underway based on the lessons learned.Keywords: clinical information system, electronic health record, state regulations, integrated referral network of clinics
Procedia PDF Downloads 3625960 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 2235959 Investigations on the Fatigue Behavior of Welded Details with Imperfections
Authors: Helen Bartsch, Markus Feldmann
Abstract:
The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.Keywords: effective notch stress, fatigue, fatigue design, weld imperfections
Procedia PDF Downloads 2605958 Modelling Impacts of Global Financial Crises on Stock Volatility of Nigeria Banks
Authors: Maruf Ariyo Raheem, Patrick Oseloka Ezepue
Abstract:
This research aimed at determining most appropriate heteroskedastic model to predicting volatility of 10 major Nigerian banks: Access, United Bank for Africa (UBA), Guaranty Trust, Skye, Diamond, Fidelity, Sterling, Union, ETI and Zenith banks using daily closing stock prices of each of the banks from 2004 to 2014. The models employed include ARCH (1), GARCH (1, 1), EGARCH (1, 1) and TARCH (1, 1). The results show that all the banks returns are highly leptokurtic, significantly skewed and thus non-normal across the four periods except for Fidelity bank during financial crises; findings similar to those of other global markets. There is also strong evidence for the presence of heteroscedasticity, and that volatility persistence during crisis is higher than before the crisis across the 10 banks, with that of UBA taking the lead, about 11 times higher during the crisis. Findings further revealed that Asymmetric GARCH models became dominant especially during financial crises and post crises when the second reforms were introduced into the banking industry by the Central Bank of Nigeria (CBN). Generally, one could say that Nigerian banks returns are volatility persistent during and after the crises, and characterised by leverage effects of negative and positive shocks during these periodsKeywords: global financial crisis, leverage effect, persistence, volatility clustering
Procedia PDF Downloads 5265957 The Determinants of Country Corruption: Unobserved Heterogeneity and Individual Choice- An empirical Application with Finite Mixture Models
Authors: Alessandra Marcelletti, Giovanni Trovato
Abstract:
Corruption in public offices is found to be the reflection of country-specific features, however, the exact magnitude and the statistical significance of its determinants effect has not yet been identified. The paper aims to propose an estimation method to measure the impact of country fundamentals on corruption, showing that covariates could differently affect the extent of corruption across countries. Thus, we exploit a model able to take into account different factors affecting the incentive to ask or to be asked for a bribe, coherently with the use of the Corruption Perception Index. We assume that discordant results achieved in literature may be explained by omitted hidden factors affecting the agents' decision process. Moreover, assuming homogeneous covariates effect may lead to unreliable conclusions since the country-specific environment is not accounted for. We apply a Finite Mixture Model with concomitant variables to 129 countries from 1995 to 2006, accounting for the impact of the initial conditions in the socio-economic structure on the corruption patterns. Our findings confirm the hypothesis of the decision process of accepting or asking for a bribe varies with specific country fundamental features.Keywords: Corruption, Finite Mixture Models, Concomitant Variables, Countries Classification
Procedia PDF Downloads 2645956 Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer
Authors: J. Mizuno, S. Takahashi
Abstract:
In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized.Keywords: MEMS, parallel-plate mirror, SMEMS, 3D-printer
Procedia PDF Downloads 4385955 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 1865954 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation
Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu
Abstract:
Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses
Procedia PDF Downloads 1355953 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon
Authors: Badache Messaoud
Abstract:
Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance
Procedia PDF Downloads 70