Search results for: one-shot object detection
2107 Application of a Geomechanical Model to Justify the Exploitation of Bazhenov-Abalak Formation, Western Siberia
Authors: Yan Yusupov, Aleksandra Soldatova, Yaroslav Zaglyadin
Abstract:
The object of this work is Bazhenov-Abalak unconventional formation (BAUF) of Western Siberia. On the base of the Geomechanical model (GMM), a methodology was developed for sweet spot intervals and zones for drilling horizontal wells with hydraulic fracturing. Based on mechanical rock typification, eight mechanical rock types (MRT) have been identified. Sweet spot intervals are represented by siliceous-carbonate (2), siliceous (5) and carbonate (8) MRT that have the greatest brittleness index (BRIT). A correlation has been established between the thickness of brittle intervals and the initial well production rates, which makes it possible to identify sweet spot zones for drilling horizontal wells with hydraulic fracturing. Brittle and ductile intervals are separated by a BRIT cut-off of 0.4 since wells located at points with BRIT < 0.4 have insignificant rates (less than 2 m³/day). Wells with an average BRIT in BAUF of more than 0.4 reach industrial production rates. The next application of GMM is associated with the instability of the overburdened clay formation above the top of the BAUF. According to the wellbore stability analysis, the recommended mud weight for this formation must be not less than 1.53–1.55 g/cc. The optimal direction for horizontal wells corresponds to the azimuth of Shmin equal to 70-80°.Keywords: unconventional reservoirs, geomechanics, sweet spot zones, borehole stability
Procedia PDF Downloads 672106 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study
Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang
Abstract:
Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.Keywords: autism, event-related potentials , mismatch negativity, speech perception
Procedia PDF Downloads 2192105 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera
Authors: Isa Moazen, Ali Nahvi
Abstract:
Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction
Procedia PDF Downloads 1382104 Theoretical BER Analyzing of MPSK Signals Based on the Signal Space
Authors: Jing Qing-feng, Liu Danmei
Abstract:
Based on the optimum detection, signal projection and Maximum A Posteriori (MAP) rule, Proakis has deduced the theoretical BER equation of Gray coded MPSK signals. Proakis analyzed the BER theoretical equations mainly based on the projection of signals, which is difficult to be understood. This article solve the same problem based on the signal space, which explains the vectors relations among the sending signals, received signals and noises. The more explicit and easy-deduced process is illustrated in this article based on the signal space, which can illustrated the relations among the signals and noises clearly. This kind of deduction has a univocal geometry meaning. It can explain the correlation between the production and calculation of BER in vector level.Keywords: MPSK, MAP, signal space, BER
Procedia PDF Downloads 3462103 Model Development for Real-Time Human Sitting Posture Detection Using a Camera
Authors: Jheanel E. Estrada, Larry A. Vea
Abstract:
This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.Keywords: posture, spinal points, gyroscope, image processing, ergonomics
Procedia PDF Downloads 3292102 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 5062101 Characterization of Graphene Oxide Coated Gold Electrodes for Bioimpedance Measurements
Authors: Fatma Gülden Şi̇mşek, Osman Meli̇h Can, Mehmet Yumak, Bora Gari̇pcan, Yekta Ülgen
Abstract:
In this study, the impedance spectroscopy is used as a detection tool in order to characterize surface coating with graphene oxide. Gold electrodes are produced by standard lithography procedures and then coated with graphene oxide using self-assembly method. The impedance of redox solution through bare gold electrodes and graphene oxide coated gold electrodes is measured in the low and high frequency range. The graphene oxide coating reduces the impedance value of the gold electrode and this reduction is distinguishable in the low-frequency range.Keywords: bioimpedance, electrode characterization, graphene oxide, gold electrodes, impedance spectroscopy
Procedia PDF Downloads 5412100 SLIITBOT: Design of a Socially Assistive Robot for SLIIT
Authors: Chandimal Jayawardena, Ridmal Mendis, Manoji Tennakoon, Theekshana Wijayathilaka, Randima Marasinghe
Abstract:
This research paper defines the research area of the implementation of the socially assistive robot (SLIITBOT). It consists of the overall process implemented within the robot’s system and limitations, along with a literature survey. This project considers developing a socially assistive robot called SLIITBOT that will interact using its voice outputs and graphical user interface with people within the university and benefit them with updates and tasks. The robot will be able to detect a person when he/she enters the room, navigate towards the position the human is standing, welcome and greet the particular person with a simple conversation using its voice, introduce the services through its voice, and provide the person with services through an electronic input via an app while guiding the person with voice outputs.Keywords: application, detection, dialogue, navigation
Procedia PDF Downloads 1692099 Microbiological Quality and Safety of Meatball Sold in Payakumbuh City, West Sumatra, Indonesia
Authors: Ferawati, H. Purwanto, Y. F. Kurnia, E. Purwati
Abstract:
The aim of this study was to evaluate the microbiological quality and safety of meatball obtained from five different manufacturers around Payakumbuh City, West Sumatra, Indonesia. Microbiological analysis of meatball sample resulted in aerobic plate count range from 7 log CFU/gr to 8.623 log CFU/gr, respectively. Total coliform ranges from 1.041 log Most Probable Number (MPN)/gr to 3.380 log MPN/gr, respectively. Chemical analysis of meatball sample consisted of borax and formalin content. The result of qualitative detection of borax and formalin content on all meatball samples were not detected. Thus, it remains essential to include the significance of effective hygiene practices as an important safety measure in consumer education programmes.Keywords: borax, formalin, meatball, microbiological quality
Procedia PDF Downloads 2892098 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering
Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi
Abstract:
In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering
Procedia PDF Downloads 1502097 Legal Interpretation of the Transplanted Law
Authors: Wahyu Kurniawan
Abstract:
Indonesia developed the legal system radically since 1999. Several laws have been established and mostly the result of transplantation. Laws were made general but legal problems have been growing. In the legal enforcement, the judges have authority to interpret the laws. Authority and freedom are the source of corruption by the courts in Indonesia. Therefore, it should be built the conceptual framework to interpret the transplanted laws as the legal basis in deciding the cases. This article describes legal development based on interpretation of transplanted law in Indonesia by using the Indonesian Supervisory Commission for Business Competition (KPPU) decisions between 2000 and 2010 as the object of the research. The study was using law as a system theory and theories of legal interpretation especially the static and dynamic interpretations. The research showed that the KPPU interpreted the concept that exists in the Competition Law by using static and dynamic interpretation. Static interpretation was used to interpret the legal concepts based on two grounds, minute of meeting during law making process and the definitions that have been recognized in the Indonesian legal system. Dynamic interpretation was used when the KPPU developing the definition of the legal concepts. The general purpose of the law and the theories of the basis of the law were the conceptual framework in using dynamic interpretation. There are two recommendations in this article. Firstly, interpreting the laws by the judges should be based on the correct conceptual framework. Secondly, the technique of interpreting the laws would be the method of controlling the judges.Keywords: legal interpretation, legal transplant, competition law, KPPU
Procedia PDF Downloads 3412096 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples
Authors: Saifullah Karimullah
Abstract:
Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine
Procedia PDF Downloads 1032095 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave
Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora
Abstract:
The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.Keywords: Enterococcus faecalis, image treatment, octave and network neuronal
Procedia PDF Downloads 2302094 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise
Authors: Mahboobeh Eghtesad, Reza Mohseni
Abstract:
We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target
Procedia PDF Downloads 3582093 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network
Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola
Abstract:
Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.Keywords: acknowledgment-based techniques, mobile ad-hoc network, selfish nodes, reputation-based techniques
Procedia PDF Downloads 3852092 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation
Authors: Hangsik Shin
Abstract:
The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.Keywords: peak detection, photoplethysmography, sampling, signal reconstruction
Procedia PDF Downloads 3682091 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 4572090 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 1022089 A 'Four Method Framework' for Fighting Software Architecture Erosion
Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar
Abstract:
Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.Keywords: software architecture, architecture erosion, prescriptive architecture, descriptive architecture
Procedia PDF Downloads 5002088 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment
Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian
Abstract:
Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB
Procedia PDF Downloads 5192087 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3932086 The Ontological Memory in Bergson as a Conceptual Tool for the Analysis of the Digital Conjuncture
Authors: Douglas Rossi Ramos
Abstract:
The current digital conjuncture, called by some authors as 'Internet of Things' (IoT), 'Web 2.0' or even 'Web 3.0', consists of a network that encompasses any communication of objects and entities, such as data, information, technologies, and people. At this juncture, especially characterized by an "object socialization," communication can no longer be represented as a simple informational flow of messages from a sender, crossing a channel or medium, reaching a receiver. The idea of communication must, therefore, be thought of more broadly in which it is possible to analyze the process communicative from interactions between humans and nonhumans. To think about this complexity, a communicative process that encompasses both humans and other beings or entities communicating (objects and things), it is necessary to constitute a new epistemology of communication to rethink concepts and notions commonly attributed to humans such as 'memory.' This research aims to contribute to this epistemological constitution from the discussion about the notion of memory according to the complex ontology of Henri Bergson. Among the results (the notion of memory in Bergson presents itself as a conceptual tool for the analysis of posthumanism and the anthropomorphic conjuncture of the new advent of digital), there was the need to think about an ontological memory, analyzed as a being itself (being itself of memory), as a strategy for understanding the forms of interaction and communication that constitute the new digital conjuncture, in which communicating beings or entities tend to interact with each other. Rethinking the idea of communication beyond the dimension of transmission in informative sequences paves the way for an ecological perspective of the digital dwelling condition.Keywords: communication, digital, Henri Bergson, memory
Procedia PDF Downloads 1642085 English Pronunciation Materials on TikTok
Authors: Sebastian Leal-Arenas
Abstract:
TikTok’s influence on contemporary society is undeniable. The impact of the mobile app transcends entertainment, as shown by the growing presence of specialized accounts dedicated to providing educational content, particularly as it pertains to language learning. However, the prevailing trend on the platform is vocabulary and grammar acquisition, neglecting a critical component: pronunciation. This study examines English pronunciation materials available on TikTok by taking a comprehensive approach that incorporates established assessment tools, such as the Learning Object Review Instrument and the Framework for Language Learning App Evaluation. Furthermore, novel evaluation categories are introduced to provide a more holistic assessment of these educational resources. 60 English pronunciation videos were part of the analysis. The findings reveal that these audio-visual materials present clear audio bolstered by high-quality video content and automatically generated closed captions. These three components enhance the comprehensibility of the input, making these concise videos valuable assets for language learners. Nevertheless, certain deficiencies are observed, such as the lack of emphasis on specific segments and their relationship with articulators. Improvements and refinements are discussed, as well as their potential utility within the language classroom. This study contributes to the ongoing investigation of multimedia materials used for language teaching and emphasizes the need to adapt pronunciation instruction methods to today’s technology.Keywords: pronunciation, segments, teaching materials, technology
Procedia PDF Downloads 862084 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health
Authors: R. Sanchez-Salcedo, N. H. Voelcker
Abstract:
Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs
Procedia PDF Downloads 182083 A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)
Procedia PDF Downloads 3202082 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms
Authors: Prabhakar Sathujoda
Abstract:
Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed
Procedia PDF Downloads 1622081 Molecular Biomonitoring of Bacterial Pathogens in Wastewater
Authors: Desouky Abd El Haleem, Sahar Zaki
Abstract:
This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.Keywords: multiplex PCR, bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, Salmonella spp.
Procedia PDF Downloads 4492080 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 1892079 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform
Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy
Abstract:
A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing
Procedia PDF Downloads 1722078 Counterfeit Product Detection Using Block Chain
Authors: Sharanya C. H., Pragathi M., Vathsala R. S., Theja K. V., Yashaswini S.
Abstract:
Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original.Keywords: blockchain, ethereum, QR code
Procedia PDF Downloads 177