Search results for: data mining applications and discovery
28520 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 50428519 The Application of the Enterprise Systems through the Cloud Computing in Company: A Review and Suggestions
Authors: Mohanaad Talal Shakir, Saad AJAJ Khalaf, Nawar Ahmed Aljumaily, Mustafa Talal Shakere
Abstract:
Cloud computing is a model for enabling convenient, on demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. Objectives of this paper are to investigate the role of the Enterprise System and Cloud Computing Services to assist and guide him to ensure the initiative become successful. The cloud computing technology offers great potential for Enterprise such as the speed of dealing with data and product introductions, innovations and speed of response. The use of cloud computing technology leads to the rapid development and competitiveness of enterprises in various fields.Keywords: cloud computing, information management, marketing, enterprise systems
Procedia PDF Downloads 69428518 Integration of Wireless Sensor Networks and Radio Frequency Identification (RFID): An Assesment
Authors: Arslan Murtaza
Abstract:
RFID (Radio Frequency Identification) and WSN (Wireless sensor network) are two significant wireless technologies that have extensive diversity of applications and provide limitless forthcoming potentials. RFID is used to identify existence and location of objects whereas WSN is used to intellect and monitor the environment. Incorporating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. It can be widely used in stock management, asset tracking, asset counting, security, military, environmental monitoring and forecasting, healthcare, intelligent home, intelligent transport vehicles, warehouse management, and precision agriculture. This assessment presents a brief introduction of RFID, WSN, and integration of WSN and RFID, and then applications related to both RFID and WSN. This assessment also deliberates status of the projects on RFID technology carried out in different computing group projects to be taken on WSN and RFID technology.Keywords: wireless sensor network, RFID, embedded sensor, Wi-Fi, Bluetooth, integration, time saving, cost efficient
Procedia PDF Downloads 33728517 Single Ended Primary Inductance Converter with Internal Model Controller
Authors: Fatih Suleyman Taskincan, Ahmet Karaarslan
Abstract:
In this article, the study and analysis of Single Ended Primary Inductance Converter (SEPIC) are presented for battery charging applications that will be used in military applications. The usage of this kind of converters come from its advantage of non-reverse polarity at outputs. As capacitors charge and discharge through inductance, peak current does not occur on capacitors. Therefore, the efficiency will be high compared to buck-boost converters. In this study, the converter (SEPIC) is designed to be operated with Internal Model Controller (IMC). The traditional controllers like Proportional Integral Controller are not preferred as its linearity behavior. Hence IMC is designed for this converter. This controller is a model-based control and provides more robustness and better set point monitoring. Moreover, it can be used for an unstable process where the conventional controller cannot handle the dynamic operation. Matlab/Simulink environment is used to simulate the converter and its controller, then, the results are shown and discussed.Keywords: DC/DC converter, single ended primary inductance converter, SEPIC, internal model controller, IMC, switched mode power supply
Procedia PDF Downloads 63528516 The Application of Polymers in Enhanced Oil Recovery: Recent Trends
Authors: Reza M. Rudd, Ali Saeedi, Colin Wood
Abstract:
In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding.Keywords: EOR, EGR, polymer flooding, profile modification, mobility control, nanocomposite hydrogels, CO2 flooding, polymeric surfactants
Procedia PDF Downloads 57328515 IoT Based Soil Moisture Monitoring System for Indoor Plants
Authors: Gul Rahim Rahimi
Abstract:
The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.Keywords: IoT-based, soil moisture monitoring, indoor plants, water management
Procedia PDF Downloads 5628514 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 56628513 Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum
Authors: Sahira N. Muslim, Alaa N. Mohammed, Saba Saadoon Khazaal, Batool Kadham Salman, Israa M. S. AL-Kadmy, Sraa N. Muslim, Ahmed S. Dwaish, Sawsan Mohammed Kareem, Sarah N. Aziz, Ruaa A. Jasim
Abstract:
Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of Penicillium expansum A4 isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against Pseudomonas aeruginosa and S. aureus and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime.Keywords: ceftazidime, Penicillium expansum, tannase, antimicrobial activity
Procedia PDF Downloads 74628512 Digital Revolution a Veritable Infrastructure for Technological Development
Authors: Osakwe Jude Odiakaosa
Abstract:
Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.Keywords: digital revolution, internet, technology, data management
Procedia PDF Downloads 45328511 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application
Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job
Abstract:
In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.Keywords: cell line, chrome, genotoxicity, leather, natural rubber
Procedia PDF Downloads 20328510 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 7428509 A High Step-Up DC-DC Converter for Renewable Energy System Applications
Authors: Sopida Vacharasukpo, Sudarat Khwan-On
Abstract:
This paper proposes a high step-up DC-DC converter topology for renewable energy system applications. The proposed converter employs only a single power switch instead of using several switches. Compared to the conventional DC-DC step-up converters the higher voltage gain with small output ripples can be achieved by using the proposed high step-up DC-DC converter topology. It can step up the low input voltage (20-50Vdc) generated from the photovoltaic modules to the high output voltage level approximately 600Vdc in order to supply the three-phase inverter fed the three-phase motor drive. In this paper, the operating principle of the proposed converter topology and its control strategy under the continuous conduction mode (CCM) are described. Finally, simulation results are shown to demonstrate the effectiveness of the proposed high step-up DC-DC converter with its control strategy to increase the voltage step-up conversion ratio.Keywords: DC-DC converter, high step-up ratio, renewable energy, single switch
Procedia PDF Downloads 119528508 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 13428507 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil
Procedia PDF Downloads 13428506 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2
Authors: Salah Belaidi
Abstract:
We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics
Procedia PDF Downloads 4328505 Exploring Pisa Monuments Using Mobile Augmented Reality
Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino
Abstract:
Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.Keywords: augmented reality, electronic compass, GPS, location-based service
Procedia PDF Downloads 28928504 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 2428503 Clonal Evaluation of Malignant Mesothelioma
Authors: Sabahattin Comertpay, Sandra Pastorino, Rosanna Mezzapelle, Mika Tanji, Oriana Strianese, Andrea Napolitano, Tracey Weigel, Joseph Friedberg, Paul Sugarbaker, Thomas Krausz, Ena Wang, Amy Powers, Giovanni Gaudino, Harvey I. Pass, Fatmagul Ozcelik, Barbara L. Parsons, Haining Yang, Michele Carbone
Abstract:
Tumors are thought to be monoclonal in origin. This paradigm arose decades ago, primarily from the study of hematopoietic malignancies and sarcomas. The clonal origin of malignant mesothelioma (MM), a deadly cancer resistant to the current therapies, has not been investigated. Examination of the pleura from patients with MM shows often the presence of multiple pleural nodules, raising the question of whether they represent independent or metastatic growth processes. To investigate the clonality patterns of MM, we used the HUMARA (Human Androgen Receptor) assay to examine 14 sporadic and 2 familial Malignant Mesotheliomas (MM). Of 16 specimens studied, 15 were informative and 14/15 revealed two electrophoretically distinct methylated HUMARA alleles, indicating a polyclonal origin for these tumors. This discovery has important clinical implications, because an accurate assessment of tumor clonality is key to the design of novel molecular strategies for the treatment of MM.Keywords: malignant mesothelioma, clonal origin, HUMARA, sarcomas
Procedia PDF Downloads 46528502 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 15128501 Simulation of Corn Yield in Carmen, North Cotabato, Philippines Using Aquacrop Model
Authors: Marilyn S. Painagan
Abstract:
This general objective of the study was to apply the AquaCrop model to the conditions in the municipality of Carmen, North Cotabato in terms of predicting corn yields in this area and determine the influence of rainfall and soil depth on simulated yield. The study revealed wide disparity in monthly yields as a consequence of similarly varying monthly rainfall magnitudes. It also found out that simulated yield varies with the depth of soil, which in this case was clay loam, the predominant soil in the study area. The model was found to be easy to use even with limited data and shows a vast potential for various farming and policy applications, such as formulation of a cropping calendar.Keywords: aquacrop, evapotranspiration, crop modelling, crop simulation
Procedia PDF Downloads 25728500 Development of a Sprayable Piezoelectric Material for E-Textile Applications
Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby
Abstract:
E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile
Procedia PDF Downloads 47028499 Beam Methods Applications to the Design of Curved Pulsed Beams
Authors: Timor Melamed
Abstract:
In this study, it consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, the evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. it derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, the harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrary curved trajectories, offering new possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods.Keywords: pulsed Airy beams, pulsed beams, pulsed curved beams, transient fields
Procedia PDF Downloads 3028498 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy
Authors: Abdullah Al Mamun, Talal Alkharobi
Abstract:
As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.Keywords: big data, cloud computing, cryptography, hadoop, public key
Procedia PDF Downloads 32428497 Implementation of Big Data Concepts Led by the Business Pressures
Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski
Abstract:
Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.Keywords: big data, unstructured data, SAP ERP, documentum
Procedia PDF Downloads 27428496 Coloured Petri Nets Model for Web Architectures of Web and Database Servers
Authors: Nidhi Gaur, Padmaja Joshi, Vijay Jain, Rajeev Srivastava
Abstract:
Web application architecture is important to achieve the desired performance for the application. Performance analysis studies are conducted to evaluate existing or planned systems. Web applications are used by hundreds of thousands of users simultaneously, which sometimes increases the risk of server failure in real time operations. We use Coloured Petri Net (CPN), a very powerful tool for modelling dynamic behaviour of a web application system. CPNs extend the vocabulary of ordinary Petri nets and add features that make them suitable for modelling large systems. The major focus of this work is on server side of web applications. The presented work focuses on modelling restructuring aspects, with major focus on concurrency and architecture, using CPN. It also focuses on bringing out the appropriate architecture for web and database servers given the number of concurrent users.Keywords: coloured Petri Nets (CPNs), concurrent users, per- formance modelling, web application architecture
Procedia PDF Downloads 60428495 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51928494 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications
Authors: Morsy Ahmed Morsy Ismail
Abstract:
In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia
Procedia PDF Downloads 18028493 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface
Procedia PDF Downloads 46428492 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: Fatima Ammari, Meriem Chenouf
Abstract:
Synthesis of gold nano particles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nano particles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; different loading percentage 1, 2 and 5%. The gold nano particles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nano particles Au-mont stabilized in Na-montmorillonite were used as catalysts for reduction of 4-nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirm directly the gold nano particles formation. The XRD and N2 adsorption results showed the formation of gold nano particles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2%Au-mont. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4-nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Na-montmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1Au-mont and within 3 min for 2Au-mont.Keywords: chemical reduction, gold, montmorillonite, nano particles, 4-nitrophenol
Procedia PDF Downloads 33328491 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 347