Search results for: convective heat transfers
799 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity
Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier
Abstract:
The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model
Procedia PDF Downloads 322798 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite
Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li
Abstract:
Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption
Procedia PDF Downloads 282797 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant
Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park
Abstract:
CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method
Procedia PDF Downloads 218796 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L
Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.
Abstract:
Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite
Procedia PDF Downloads 99795 Design and Development of Solar Water Cooler Using Principle of Evaporation
Authors: Vipul Shiralkar, Rohit Khadilkar, Shekhar Kulkarni, Ismail Mullani, Omkar Malvankar
Abstract:
The use of water cooler has increased and become an important appliance in the world of global warming. Most of the coolers are electrically operated. In this study an experimental setup of evaporative water cooler using solar energy is designed and developed. It works on the principle of heat transfer using evaporation of water. Water is made to flow through copper tubes arranged in a specific array manner. Cotton plug is wrapped on copper tubes and rubber pipes are arranged in the same way as copper tubes above it. Water percolated from rubber pipes is absorbed by cotton plug. The setup has 40L water carrying capacity with forced cooling arrangement and variable speed fan which uses solar energy stored in 20Ah capacity battery. Fan speed greatly affects the temperature drop. Tests were performed at different fan speed. Maximum temperature drop achieved was 90C at 1440 rpm of fan speed. This temperature drop is very attractive. This water cooler uses solar energy hence it is cost efficient and it is affordable to rural community as well. The cooler is free from any harmful emissions like other refrigerants and hence environmental friendly. Very less maintenance is required as compared to the conventional electrical water cooler.Keywords: evaporation, cooler, energy, copper, solar, cost
Procedia PDF Downloads 320794 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process
Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe
Abstract:
The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.Keywords: biofuel, hydrogen, R. rubrum, bioenergy
Procedia PDF Downloads 197793 Effect of Cuminum Cyminum L. Essential Oil on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese
Authors: Ali Misaghi, Afshin Akhondzadeh Basti, Ehsan Sadeghi
Abstract:
Staphylococcus aureus is a pathogen of major concern for clinical infection and food borne illness. Humans and most domesticated animals harbor S. aureus, and so we may expect staphylococci to be present in food products of animal origin or in those handled directly by humans, unless heat processing is applied to destroy them. Cuminum cyminum L. has been allocated the topic of some recent studies in addition to its well-documented traditional usage for treatment of toothache, dyspepsia, diarrhea, epilepsy and jaundice. The air-dried seed of the plant was completely immersed in water and subjected to hydro distillation for 3 h, using a clevenger-type apparatus. In this study, the effect of Cuminum cyminum L. essential oil (EO) on growth of Staphylococcus aureus in white brined cheese was evaluated. The experiment included different levels of EO (0, 7.5, 15 and 30 mL/ 100 mL milk) to assess their effects on S. aureus count during the manufacture, ripening and storage of Iranian white brined cheese for up to 75 days. The significant (P < 0.05) inhibitory effects of EO (even at its lowest concentration) on this organism were observed. The significant (P < 0.05) inhibitory effect of the EO on S. aureus shown in this study may improve the scope of the EO function in the food industry.Keywords: cuminum cyminum L. essential oil, staphylococcus aureus, white brined cheese
Procedia PDF Downloads 390792 Laser Based Microfabrication of a Microheater Chip for Cell Culture
Authors: Daniel Nieto, Ramiro Couceiro
Abstract:
Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.Keywords: laser microfabrication, microheater, bioengineering, cell culture
Procedia PDF Downloads 297791 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus
Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri
Abstract:
Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.Keywords: natural convection, concentric, eccentric, Nusselt number, annulus
Procedia PDF Downloads 373790 Spatial Distribution of Cellular Water in Pear Fruit: An Experimental Investigation
Authors: Md. Imran H. Khan, T. Farrell, M. A. Karim
Abstract:
Highly porous and hygroscopic characteristics of pear make it complex to understand the cellular level water distribution. In pear tissue, water is mainly distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. Understanding of these three types of water in pear tissue is crucial for predicting actual heat and mass transfer during drying. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the pear tissue. During this study, Green Anjou Pear was taken for the investigation. The experiment was performed using 1H-NMR- T2 relaxometry. Various types of water component were calculated by using multi-component fits of the T2 relaxation curves. The experimental result showed that in pear tissue 78-82% water exist in intracellular space; 12-16% water in intercellular space and only 2-4% water exist in the cell wall space. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. It was also investigated that the physical properties of pear and the proportion of the different types of water has a strong relationship. Cell wall water depends on the proportion of solid in the sample tissue whereas free water depends on the porosity of the material.Keywords: intracellular water, intercellular water, cell wall water, physical property, pear
Procedia PDF Downloads 254789 Climate Change and Human Migration
Authors: Sungwoo Park
Abstract:
The paper attempts to investigate the correlation between climate change and migration that has caused violent disputes in some regions of the world. Recently, NGOs and educational institutions have proposed claims that migratory patterns and violent uprisings are intertwined with climate change. Thus, the paper is primarily concerned with collecting evidences provided from scholars, validating this significant connection between climate change and migration, and evaluating and suggesting current and future research approaches respectively to enhance the acknowledgment and protection of environmental refugees. In order to examine the linkage of environmental migration, primary sources, such as political speeches, and secondary sources like theses from environmental policy analysts, books, and reports are used. More specifically, the investigation focuses on an civil war in Syria to draw a connection between environmental migration and violent dispute that threatens the global security. The examination undertaken specifically analyzes examples where forced migration occurred due to climate change. In Bangladesh, Pakistan, and Kiribati, residents have been at risk of fleeing their countries because of abnormal climate patterns, such as the rise of sea level or an excessive heat stress. As the brutal uprising in Syria has proven that climate change can pose a significant threat to global security, correlation between climate change and migration is surely worth delving into.Keywords: climate change, climate migration, global security, refugee crisis
Procedia PDF Downloads 348788 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang
Abstract:
Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship
Procedia PDF Downloads 503787 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits
Authors: Sandeep Das
Abstract:
Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysisKeywords: ANSYS, functionally graded material, lead-acid battery, terminal post
Procedia PDF Downloads 140786 Development of β-Ti Alloy Powders for Additive Manufacturing for Application in Patient-Specific Orthopedic Implants
Authors: Eugene Ivanov, Eduardo del-Rio, Igor Kapchenko, Maija Nystrӧm, Juha Kotila
Abstract:
Series of low modulus beta Ti alloy billets and powders can be produced in commercial quantities using a combination of electron beam melting (EBM) and EIGA atomization processes. In the present study, TNZT alloy powder was produced and processed in the EOSINT M290 laser sintering system to produce parts for mechanical testing. Post heat treatments such as diffusion annealing to reduce internal stresses or hot isostatic pressing to remove closed pores were not applied. The density can visually be estimated to be > 99,9 %. According to EDS study Nb, Zr, and Ta are distributed homogeneously throughout the printed sample. There are no indications for any segregation or chemical inhomogeneity, i.e. variation of the element distribution. These points to the fact that under the applied experimental conditions the melt generated by the laser rapidly cools down in the SLM (Selective Laser Melting) process. The selective laser sintering yielded dense structures with relatively good surface quality. The mechanical properties, especially the elongation (24%) along with tensile strength ( > 500MPa) and modulus of elasticity (~60GPa), were found to be promising compared to titanium alloys in general.Keywords: beta titanium alloys, additive manufacturing, powder, implants
Procedia PDF Downloads 228785 Effects of Diluent Gas Velocity on Formation of Moderate or Intense Low-Oxygen Dilution Combustion with Fuel Spray for Gas Turbine
Authors: ChunLoon Cha, HoYeon Lee, SangSoon Hwang
Abstract:
Mild combustion is characterized with its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise and thermal stress. However, most studies for MILD combustion have been focused on gas phase fuel. Therefore further study on MILD combustion using liquid fuel is needed for the application to liquid fueled gas turbine especially. In this work, we will focus on numerical simulation of the effects of diluent gas velocity on the formation of liquid fuel MILD combustion used in gas turbine area. A series of numerical simulations using Ansys fluent 18.2 have been carried out in order to investigate the detail effect of the flow field in the furnace on the formation of MILD combustion. The operating conditions were fixed at relatively lower heat intensity of 1.28 MW/m³ atm and various global equivalence ratios were changed. The results show that the local high temperature region was decreased and the flame temperature was uniformly distributed due to high velocity of diluted burnt gas. The increasing of diluted burnt gas velocity can be controlled by open ratio of adapter size. It was found that the maximum temperature became lower than 1800K and the average temperature was lower than 1500K that thermal NO formation was suppressed.Keywords: MILD combustion, spray combustion, liquid fuel, diluent gas velocity, low NOx emission
Procedia PDF Downloads 232784 Investigation on Porcine Follicular Fluid Protein Pattern of Medium and Large Follicles
Authors: Hatairuk Tungkasen, Somrudee Phetchrid, Suwapat Jaidee, Supinya Yoomak, Chantana Kankamol, Mayuree Pumipaiboon, Mayuva Areekijseree
Abstract:
Ovaries of reproductive female pigs were obtained from local slaughterhouses in Nakorn Pathom Province, Thailand. Follicular fluid of medium follicle (5-6 diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected by sterile technique and analyzed protein pattern. The follicular fluid protein bands were found by SDS-PAGE which has no protein band in difference compared to standard protein band. So we chose protein band molecular weight 50, 62-65, 75-80, 90, 120-160, and >220 kDa were analyzed by LC/MS/MS. The result was found immunoglobulin gamma chain, keratin, transferrin, heat shock protein, and plasminogen precursor, ceruloplasmin, and hemopexin, and protease, respectively. All proteins play important roles in promotion and regulation on growth and development of reproductive cells. The result of this study found many proteins which were useful and important for in vitro oocyte maturation and embryonic development of cell technology in animals. The further study will be use porcine follicular fluid protein of medium and large follicles as feeder cells in in vitro condition to promote oocyte and embryo maturation.Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE
Procedia PDF Downloads 585783 The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost
Authors: Waleed S. Alwaneen
Abstract:
Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure.Keywords: fruit beetle, tiger worms, waxworms, control
Procedia PDF Downloads 134782 Impact of Global Climate Change on Economy of Pakistan: How to Ensure Sustainable Food and Energy Production
Authors: Sabahat Zahra
Abstract:
The purpose of this research is to present the changing global environment and its potential impacts on sustainable food and energy production at global level, particularly in Pakistan. The food and energy related-economic sector has been subjected to negative consequences due to recent extreme changes in weather conditions, particularly in developing countries. Besides continuous modifications in weather, population is also increasing by time, therefore it is necessary to take special steps and start effective initiatives to cope with the challenges of food and energy security to fight hunger and for economic stability of country. Severe increase in temperature and heat waves has also negative impacts on food production as well as energy sustainability. Energy (in terms of electricity) consumption has grown up than the production potential of the country as a consequence of increasing warm weather. Ultimately prices gone up when there is more consumption than production. Therefore, all these aspects of climate change are interrelated with socio-economic issues. There is a need to develop long-term policies on regional and national levels for maintainable economic growth. This research presents a framework-plan and recommendations for implementation needed to mitigate the potential threats due to global climate change sustainable food and energy production under climate change in the country.Keywords: climate changes, energy security, food security, global climate change
Procedia PDF Downloads 354781 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.Keywords: telescopic front fork, induction welding, hook crack, internal oxidation
Procedia PDF Downloads 131780 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 299779 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine
Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska
Abstract:
Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: CFD, combustion, injection, opposed piston
Procedia PDF Downloads 275778 Monitoring Energy Reduction through Applying Green Roofs to Residential Buildings in Dubai
Authors: Hanan M. Taleb
Abstract:
Since buildings are a major consumer of energy, their potential impact on the environment is considerable. Therefore, expanding the application of low energy architecture is of the utmost importance. Designing with nature is also one of the most attractive methods of design for many architects and designers because it creates a pathway to sustainability. One feature of designing with nature is the use of green roofing which aims to cover the roof with vegetation either partially or completely. Appreciably, green roofing in a building has many advantages including absorbing rainwater, providing thermal insulation, enhancing the ecology, creating a peaceful retreat for people and animals, improving air quality and helping to offset the air temperature and heat island effect. The aim of this paper is to monitor energy saving in the residential buildings of Dubai after applying green roofing techniques. The paper also attempts to provide a thermal analysis after the application of green roofs. A villa in Dubai was chosen as a case study. With the aid of energy simulation software, namely Design Builder, as well as manual recording and calculations, the energy savings after applying the green roofing were detected. To that extent, the paper draws some recommendations with regard to the types of green roofing that should be used in these particular climatic conditions based on this real experiment that took place over a one year period.Keywords: residential buildings, Dubai, energy saving, green roofing, CFD, thermal comfort
Procedia PDF Downloads 299777 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach
Authors: Mukesh Saran, Ashima Bagaria
Abstract:
Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory
Procedia PDF Downloads 350776 A Hybrid Combustion Chamber Design for Diesel Engines
Authors: R. Gopakumar, G. Nagarajan
Abstract:
Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.Keywords: DI, IDI, hybrid combustion, diesel engines
Procedia PDF Downloads 537775 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables
Procedia PDF Downloads 334774 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine
Authors: Allouache Nadia
Abstract:
Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine
Procedia PDF Downloads 255773 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications
Abstract:
Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).Keywords: metal foam, Al, salt replication method, mechanical properties, SEM
Procedia PDF Downloads 356772 Control of Spoilage Fungi by Lactobacilli
Authors: Laref Nora, Guessas Bettache
Abstract:
Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity
Procedia PDF Downloads 334771 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program
Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song
Abstract:
Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory
Procedia PDF Downloads 461770 Evaluation of the Effect Rare Earth Metal on the Microstructure and Properties of Zn-ZnO-Y2O3 Coating of Mild Steel
Authors: A. P. I. Popoola, O. S. I. Fayomi, V. S. Aigbodion
Abstract:
Mild steel has found many engineering applications due to its great formability, availability, low cost and good mechanical properties among others. However its functionality and durability is subject of concern due to corrosion deterioration. Based on these Yttrium is selected as reinforcing particles using electroplating process in this work to enhance the corrosion resistance. Bath formulation of zinc-yttrium was prepared at moderated temperature and pH, to coat mild steel sample. Corrosion and wear behaviour were analyzed using electrochemical potentiostat and abrasive test rig. The composition and microstructure of coated films were investigated standard method. The microstructure of the deposited plate obtained from optimum (10%Yttrium) bath revealed fine-grained deposit of the alloy in the presence of condensation product and hence modified the morphology of zinc–yttrium alloy deposit. It is demonstrated that by adding yttria particles, mild steel can be strengthened with improved polarization behaviour and higher resistance to corrosive in sodium chloride solutions. Microhardness of the coating compared to plain mild steel have increased before and after heat treatment, and an increased wear resistance was also obtained from the modified coating of zinc-yttrium.Keywords: microhardness, zinc-yttrium, coating, mild steel, microstructure, wear, corrosion
Procedia PDF Downloads 289