Search results for: quantum computer
2708 Photoluminescent Properties of Noble Metal Nanoparticles Supported Yttrium Aluminum Garnet Nanoparticles Doped with Cerium (Ⅲ) Ions
Authors: Mitsunobu Iwasaki, Akifumi Iseda
Abstract:
Yttrium aluminum garnet doped with cerium (Ⅲ) ions (Y3Al5O12:Ce3+, YAG:Ce3+) has attracted a great attention because it can efficiently convert the blue light into a very broad yellow emission band, which produces white light emitting diodes and is applied for panel displays. To improve the brightness and resolution of the display, a considerable attention has been directed to develop fine phosphor particles. We have prepared YAG:Ce3+ nanophosphors by environmental-friendly wet process. The peak maximum of absorption spectra of surface plasmon of Ag nanopaticles are close to that of the excitation spectra (460 nm) of YAG:Ce3+. It can be expected that Ag nanoparticles supported onto the surface of YAG:Ce3+ (Ag-YAG:Ce3+) enhance the absorption of Ce3+ ions. In this study, we have prepared Ag-YAG:Ce3+ nanophosphors and investigated their photoluminescent properties. YCl3・6H2O and AlCl3・6H2O with a molar ratio of Y:Al=3:5 were dissolved in ethanol (100 ml), and CeCl3•7H2O (0.3 mol%) was further added to the above solution. Then, NaOH (4.6×10-2 mol) dissolved in ethanol (50 ml) was added dropwise to the mixture under reflux over 2 hours, and the solution was further refluxed for 1 hour. After cooling to room temperature, precipitates in the reaction mixture were heated at 673 K for 1 hour. After the calcination, the particles were immersed in AgNO3 solution for 1 hour, followed by sintering at 1123 K for 1 hour. YAG:Ce3+ were confirmed to be nanocrystals with a crystallite size of 50-80 nm in diameter. Ag nanoparticles supported onto YAG:Ce3+ were single nanometers in diameter. The excitation and emission spectra were 454 nm and 539 nm at a maximum wavelength, respectively. The emission intensity was maximum for Ag-YAG:Ce3+ immersed into 0.5 mM AgCl (Ag-YAG:Ce (0.5 mM)). The absorption maximum (461 nm) was increased for Ag-YAG:Ce3+ in comparison with that for YAG:Ce3+, indicating that the absorption was enhanced by the addition of Ag. The external and internal quantum efficiencies became 11.2 % and 36.9 % for Ag-YAG:Ce (0.5 mM), respectively. The emission intensity and absorption maximum of Ag-YAG:Ce (0.5 mM)×n (n=1, 2, 3) were increased with an increase of the number of supporting times (n), respectively. The external and internal quantum efficiencies were increased for the increase of n, respectively. The external quantum efficiency of Ag-YAG:Ce (0.5 mM) (n=3) became twice as large as that of YAG:Ce. In conclusion, Ag nanoparticles supported onto YAG:Ce3+ increased absorption and quantum efficiency. Therefore, the support of Ag nanoparticles enhanced the photoluminescent properties of YAG:Ce3+.Keywords: plasmon, quantum efficiency, silver nanoparticles, yttrium aluminum garnet
Procedia PDF Downloads 2662707 Dynamics of Light Induced Current in 1D Coupled Quantum Dots
Authors: Tokuei Sako
Abstract:
Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation
Procedia PDF Downloads 3562706 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)
Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary
Abstract:
In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.Keywords: photoluminescence, quantum dots, quenching, sensor
Procedia PDF Downloads 2662705 GE as a Channel Material in P-Type MOSFETs
Authors: S. Slimani, B. Djellouli
Abstract:
Novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials like Ge is a very promising material due to its high mobility and is being considered to replace Si in the channel to achieve higher drive currents and switching speeds .Various approaches to circumvent the scaling limits to benchmark the performance of nanoscale MOSFETS with different channel materials, the optimized structure is simulated within nextnano in order to highlight the quantum effects on DG MOSFETs when Si is replaced by Ge and SiO2 is replaced by ZrO2 and HfO2as the gate dielectric. The results have shown that Ge MOSFET have the highest mobility and high permittivity oxides serve to maintain high drive current. The simulations show significant improvements compared with DGMOSFET using SiO2 gate dielectric and Si channel.Keywords: high mobility, high-k, quantum effects, SOI-DGMOSFET
Procedia PDF Downloads 3672704 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions
Authors: Suleiman Bashir Adamu, Lawan Sani Taura
Abstract:
We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained.Keywords: Eigenvalues, Eigenfunction, Hamiltonian, Klein- Gordon equation, PT-symmetric quantum mechanics
Procedia PDF Downloads 3832703 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 602702 Preliminary Proposal to Use Adaptive Computer Games in the Virtual Rehabilitation Therapy
Authors: Mamoun S. Ideis, Zein Salah
Abstract:
Virtual Rehabilitation (VR) refers to using Virtual Reality’s hardware and simulations as means of exercising tools to rehabilitate patients in need. These patients will undergo their treatment exercises while playing different computer games, which helps achieve greater motivation for patients undergoing their therapeutic exercises. Virtual Rehabilitation systems adopt computer games as part of the treatment therapy. In this paper, we present a preliminary proposal to using adaptive computer games in Virtual Rehabilitation therapy. We also present some tips in designing those adaptive computer games by using different machine learning algorithms in order to create a personalized experience for each patient, which in turn, increases the potential benefits of the treatment that each patient receives. Furthermore, we propose a method of comparing the results of treatment using the adaptive computer games with the results of using static and classical computer games.Keywords: virtual rehabilitation, physiotherapy, adaptive computer games, post-stroke, game design
Procedia PDF Downloads 2972701 Analysis the Different Types of Nano Sensors on Based of Structure and It’s Applications on Nano Electronics
Authors: Hefzollah Mohammadiyan, Mohammad Bagher Heidari, Ensiyeh Hajeb
Abstract:
In this paper investigates and analyses the structure of nano sensors will be discussed. The structure can be classified based of nano sensors: quantum points, carbon nanotubes and nano tools, which details into each other and in turn are analyzed. Then will be fully examined to the Carbon nanotubes as chemical and mechanical sensors. The following discussion, be examined compares the advantages and disadvantages as different types of sensors and also it has feature and a wide range of applications in various industries. Finally, the structure and application of Chemical sensor transistors and the sensors will be discussed in air pollution control.Keywords: carbon nanotubes, quantum points, chemical sensors, mechanical sensors, chemical sensor transistors, single walled nanotube (SWNT), atomic force microscope (AFM)
Procedia PDF Downloads 4502700 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires
Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja
Abstract:
The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources
Procedia PDF Downloads 3922699 Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field
Authors: Vladimir Mantsevich, Natalya Maslova, Petr Arseyev
Abstract:
We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases.Keywords: Coulomb correlations, negative tunneling conductivity, quantum dots, rabi frequency
Procedia PDF Downloads 4512698 The Quantum Theory of Music and Human Languages
Authors: Mballa Abanda Luc Aurelien Serge, Henda Gnakate Biba, Kuate Guemo Romaric, Akono Rufine Nicole, Zabotom Yaya Fadel Biba, Petfiang Sidonie, Bella Suzane Jenifer
Abstract:
The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original, and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological, and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation, and the question of modeling in the human sciences: mathematics, computer science, translation automation, and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal, and random music. The experimentation confirming the theorization, I designed a semi-digital, semi-analog application that translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music, and deterministic and random music). To test this application, I use music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). The translation is done (from writing to writing, from writing to speech, and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz, and world music or variety, etc. The software runs, giving you the option to choose harmonies, and then you select your melody.Keywords: language, music, sciences, quantum entenglement
Procedia PDF Downloads 772697 Bound State Problems and Functional Differential Geometry
Authors: S. Srednyak
Abstract:
We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems.Keywords: functional equations, quantum field theory, holomorphic functions, Yang Mills mass gap problem, quantum chaos
Procedia PDF Downloads 702696 Perception of Secondary Schools’ Students on Computer Education in Federal Capital Territory (FCT-Abuja), Nigeria
Authors: Salako Emmanuel Adekunle
Abstract:
Computer education is referred to as the knowledge and ability to use computers and related technology efficiently, with a range of skills covering levels from basic use to advance. Computer continues to make an ever-increasing impact on all aspect of human endeavours such as education. With numerous benefits of computer education, what are the insights of students on computer education? This study investigated the perception of senior secondary school students on computer education in Federal Capital Territory (FCT), Abuja, Nigeria. A sample of 7500 senior secondary schools students was involved in the study, one hundred (100) private and fifty (50) public schools within FCT. They were selected by using simple random sampling technique. A questionnaire [PSSSCEQ] was developed and validated through expert judgement and reliability co-efficient of 0.84 was obtained. It was used to gather relevant data on computer education. Findings confirmed that the students in the FCT had positive perception on computer education. Some factors were identified that affect students’ perception on computer education. The null hypotheses were tested using t-test and ANOVA statistical analyses at 0.05 level of significance. Based on these findings, some recommendations were made which include competent teachers should be employed into all secondary schools; this will help students to acquire relevant knowledge in computer education, technological supports should be provided to all secondary schools; this will help the users (students) to solve specific problems in computer education and financial supports should be provided to procure computer facilities that will enhance the teaching and the learning of computer education.Keywords: computer education, perception, secondary school, students
Procedia PDF Downloads 4642695 Quantum Inspired Security on a Mobile Phone
Authors: Yu Qin, Wanjiaman Li
Abstract:
The widespread use of mobile electronic devices increases the complexities of mobile security. This thesis aims to provide a secure communication environment for smartphone users. Some research proves that the one-time pad is one of the securest encryption methods, and that the key distribution problem can be solved by using the QKD (quantum key distribution). The objective of this project is to design an Android APP (application) to exchange several random keys between mobile phones. Inspired by QKD, the developed APP uses the quick response (QR) code as a carrier to dispatch large amounts of one-time keys. After evaluating the performance of APP, it allows the mobile phone to capture and decode 1800 bytes of random data in 600ms. The continuous scanning mode of APP is designed to improve the overall transmission performance and user experience, and the maximum transmission rate of this mode is around 2200 bytes/s. The omnidirectional readability and error correction capability of QR code gives it a better real-life application, and the features of adequate storage capacity and quick response optimize overall transmission efficiency. The security of this APP is guaranteed since QR code is exchanged face-to-face, eliminating the risk of being eavesdropped. Also, the id of QR code is the only message that would be transmitted through the whole communication. The experimental results show this project can achieve superior transmission performance, and the correlation between the transmission rate of the system and several parameters, such as the QR code size, has been analyzed. In addition, some existing technologies and the main findings in the context of the project are summarized and critically compared in detail.Keywords: one-time pad, QKD (quantum key distribution), QR code, application
Procedia PDF Downloads 1462694 Mapping Tunnelling Parameters for Global Optimization in Big Data via Dye Laser Simulation
Authors: Sahil Imtiyaz
Abstract:
One of the biggest challenges has emerged from the ever-expanding, dynamic, and instantaneously changing space-Big Data; and to find a data point and inherit wisdom to this space is a hard task. In this paper, we reduce the space of big data in Hamiltonian formalism that is in concordance with Ising Model. For this formulation, we simulate the system using dye laser in FORTRAN and analyse the dynamics of the data point in energy well of rhodium atom. After mapping the photon intensity and pulse width with energy and potential we concluded that as we increase the energy there is also increase in probability of tunnelling up to some point and then it starts decreasing and then shows a randomizing behaviour. It is due to decoherence with the environment and hence there is a loss of ‘quantumness’. This interprets the efficiency parameter and the extent of quantum evolution. The results are strongly encouraging in favour of the use of ‘Topological Property’ as a source of information instead of the qubit.Keywords: big data, optimization, quantum evolution, hamiltonian, dye laser, fermionic computations
Procedia PDF Downloads 1942693 Human Kinetics Education and the Computer Operations, Effects and Merits
Authors: Kehinde Adeyeye Adelabu
Abstract:
Computer applications has completely revolutionized the way of life of people which does not exclude the field of sport education. There are computer technologies which help to enhance teaching in every field of education. Invention of computers has done great to the field of education. This study was therefore carried out to examine the effects and merits of computer operations in Human Kinetics Education and Sports. The study was able to identify the component of computer, uses of computer in Human Kinetics education (sports), computer applications in some branches of human kinetics education. A qualitative research method was employed by the author in gathering experts’ views and used to analyze the effects and merits of computer applications in the field of human kinetics education. No experiment was performed in the cause of carrying out the study. The source of information for the study was text-books, journal, articles, past project reports, internet i.e. Google search engine. Computer has significantly helped to improve Education (Human Kinetic), it has complemented the basic physical fitness testing and gave a more scientific basis to the testing. The use of the software and packages has made cost projections, database applications, inventory control, management of events, word processing, electronic mailing and record keeping easier than the pasts.Keywords: application, computer operation, education, human kinetics
Procedia PDF Downloads 1862692 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation
Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal
Abstract:
We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).Keywords: authentication, edge computing, industrial IoT, post-quantum resistance
Procedia PDF Downloads 1972691 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time
Authors: Francisco Bulnes
Abstract:
Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, quantum topological diffeomorphism
Procedia PDF Downloads 3092690 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films
Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno
Abstract:
Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.Keywords: doping, quantum confinement, optical band gap, PbS
Procedia PDF Downloads 3832689 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum
Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson
Abstract:
Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots
Procedia PDF Downloads 3332688 Analytical Study of CPU Scheduling Algorithms
Authors: Keshav Rathi, Aakriti Sharma, Vinayak R. Dinesh, Irfan Ramzan Parray
Abstract:
Scheduling is a basic operating system function since practically all computer resources are scheduled before use. The CPU is one of the most important computer resources. Central Processing Unit (CPU) scheduling is vital because it allows the CPU to transition between processes. A processor is the most significant resource in a computer; the operating system can increase the computer's productivity. The objective of the operating system is to allow as many processes as possible to operate at the same time in order to maximize CPU utilization. The highly efficient CPU scheduler is based on the invention of high-quality scheduling algorithms that meet the scheduling objectives. In this paper, we reviewed various fundamental CPU scheduling algorithms for a single CPU and showed which algorithm is best for the particular situation.Keywords: computer science, Operating system, CPU scheduling, cpu algorithms
Procedia PDF Downloads 52687 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells
Authors: Douglas Yeboah, Jai Singh
Abstract:
It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters
Procedia PDF Downloads 3332686 Design of Speedy, Scanty Adder for Lossy Application Using QCA
Authors: T. Angeline Priyanka, R. Ganesan
Abstract:
Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover
Procedia PDF Downloads 5562685 Computer Anxiety and the Use of Computerized System by University Librarians in Delta State University Library, Nigeria
Authors: L. Arumuru
Abstract:
The paper investigates computer anxiety and the use of computerized library system by university librarians in Delta State University library, Abraka, Nigeria. Some of the root causes of computer anxiety among university librarians such as lack of exposure to computers at early age, inadequate computer skills, inadequate computer training, fear at the sight of a computer, lack of understanding of how computers work, etc. were pin-pointed in the study. Also, the different services rendered in the university libraries with the aid of computers such as reference services, circulation services, acquisition services, cataloguing and classification services, etc. were identified. The study employed the descriptive survey research design through the expo-facto method, with a population of 56 librarians, while the simple percentage and frequency counts were used to analyze the data generated from the administered copies of the questionnaire. Based on the aforementioned root causes of computer anxiety and the resultant effect on computerized library system, recommendations were proffered in the study.Keywords: computer anxiety, computerized library system, library services, university librarians
Procedia PDF Downloads 3872684 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 132683 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices
Authors: Esmat Mohammadinasab
Abstract:
The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.Keywords: topological indices, quantum descriptors, DFT method, nanotubes
Procedia PDF Downloads 3352682 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices
Authors: M. Habibi
Abstract:
The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device
Procedia PDF Downloads 4632681 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 3132680 Modern Era Applications of Mathematics and Computer Science
Authors: Ogunrinde Roseline Bosede, Ogunrinde Rowland Rotimi
Abstract:
Just as the development of ideas of early mathematics was essentially motivated by social needs, the invention of the computer was equally inspired by social needs. The early years of the twenty-first century have been remarkable in advances in mathematical and computer sciences. Mathematical and computer sciences work are fast becoming an increasingly integral and essential components of a growing catalogues of areas of interests in biology, business, military, medicine, social sciences, advanced design, advanced materials, climate, banking and finance, and many other fields of disciplines. This paper seeks to highlight the trend and impacts of the duo in the technological advancements being witnessed in our today's world.Keywords: computer, impacts, mathematics, modern society
Procedia PDF Downloads 4002679 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications
Authors: Artion Kashuri, Rozana Liko
Abstract:
In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale
Procedia PDF Downloads 150