Search results for: photocurrent density
3281 Inversion of Gravity Data for Density Reconstruction
Authors: Arka Roy, Chandra Prakash Dubey
Abstract:
Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation
Procedia PDF Downloads 2123280 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement
Authors: Haibin Zhou, Pingping Yao, Kunyang Fan
Abstract:
Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism
Procedia PDF Downloads 2783279 Optimal Parameters of Two-Color Ionizing Laser Pulses for Terahertz Generation
Authors: I. D. Laryushin, V. A. Kostin, A. A. Silaev, N. V. Vvedenskii
Abstract:
Generation of broadband intense terahertz (THz) radiation attracts reasonable interest due to various applications, such as the THz time-domain spectroscopy, the probing and control of various ultrafast processes, the THz imaging with subwavelength resolution, and many others. One of the most promising methods for generating powerful and broadband terahertz pulses is based on focusing two-color femtosecond ionizing laser pulses in gases, including ambient air. For this method, the amplitudes of terahertz pulses are determined by the free-electron current density remaining in a formed plasma after the passage of the laser pulse. The excitation of this residual current density can be treated as multi-wave mixing: Аn effective generation of terahertz radiation is possible only when the frequency ratio of one-color components in the two-color pulse is close to irreducible rational fraction a/b with small odd sum a + b. This work focuses on the optimal parameters (polarizations and intensities) of laser components for the strongest THz generation. The optimal values of parameters are found numerically and analytically with the use of semiclassical approach for calculating the residual current density. For frequency ratios close to a/(a ± 1) with natural a, the strongest THz generation is shown to take place when the both laser components have circular polarizations and equal intensities. For this optimal case, an analytical formula for the residual current density was derived. For the frequency ratios such as 2/5, the two-color ionizing pulses with circularly polarized components practically do not excite the residual current density. However, the optimal parameters correspond generally to specific elliptical (not linear) polarizations of the components and intensity ratios close to unity.Keywords: broadband terahertz radiation, ionization, laser plasma, ultrashort two-color pulses
Procedia PDF Downloads 2113278 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study
Authors: Dinesh Kumar Maurya, Sapan Mohan Saini
Abstract:
A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound
Procedia PDF Downloads 3493277 Surface Induced Alteration of Nanosized Amorphous Alumina
Authors: A. Katsman, L. Bloch, Y. Etinger, Y. Kauffmann, B. Pokroy
Abstract:
Various nanosized amorphous alumina thin films in the range of (2.4 - 63.1) nm were deposited onto amorphous carbon and amorphous Si3N4 membrane grids. Transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) techniques were used to probe the size effect on the short range order and the amorphous to crystalline phase transition temperature. It was found that the short-range order changes as a function of size: the fraction of tetrahedral Al sites is greater in thinner amorphous films. This result correlates with the change of amorphous alumina density with the film thickness demonstrated by the reflectivity experiments: the thinner amorphous films have the less density. These effects are discussed in terms of surface reconstruction of the amorphous alumina films. The average atomic binding energy in the thin film layer decreases with decease of the thickness, while the average O-Al interatomic distance increases. The reconstruction of amorphous alumina is induced by the surface reconstruction, and the short range order changes being dependent on the density. Decrease of the surface energy during reconstruction is the driving force of the alumina reconstruction (density change) followed by relaxation process (short range order change). The amorphous to crystalline phase transition temperature measured by DSC rises with the decrease in thickness from 997.6°C for 13.9 nm to 1020.4 °C for 2.7 nm thick. This effect was attributed to the different film densities: formation of nanovoids preceding and accompanying crystallization process influences the crystallization rate, and by these means, the temperature of crystallization peak.Keywords: amorphous alumina, density, short range order, size effect
Procedia PDF Downloads 4663276 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model
Procedia PDF Downloads 3863275 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability
Authors: Xvelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.Keywords: space under bridge, potential evaluation, high density urban area, updated using
Procedia PDF Downloads 783274 Application of Remote Sensing for Monitoring the Impact of Lapindo Mud Sedimentation for Mangrove Ecosystem, Case Study in Sidoarjo, East Java
Authors: Akbar Cahyadhi Pratama Putra, Tantri Utami Widhaningtyas, M. Randy Aswin
Abstract:
Indonesia as an archipelagic nation have very long coastline which have large potential marine resources, one of that is the mangrove ecosystems. Lapindo mudflow disaster in Sidoarjo, East Java requires mudflow flowed into the sea through the river Brantas and Porong. Mud material that transported by river flow is feared dangerous because they contain harmful substances such as heavy metals. This study aims to map the mangrove ecosystem seen from its density and knowing how big the impact of a disaster on the Lapindo mud to mangrove ecosystem and accompanied by efforts to address the mangrove ecosystem that maintained continuity. Mapping coastal mangrove conditions of Sidoarjo was done using remote sensing products that Landsat 7 ETM + images with dry months of recording time in 2002, 2006, 2009, and 2014. The density of mangrove detected using NDVI that uses the band 3 that is the red channel and band 4 that is near IR channel. Image processing was used to produce NDVI using ENVI 5.1 software. NDVI results were used for the detection of mangrove density is 0-1. The development of mangrove ecosystems of both area and density from year to year experienced has a significant increase. Mangrove ecosystems growths are affected by material deposition area of Lapindo mud on Porong and Brantas river estuary, where the silt is growing medium suitable mangrove ecosystem and increasingly growing. Increasing the density caused support by public awareness to prevent heavy metals in the material so that the Lapindo mud mangrove breeding done around the farm.Keywords: archipelagic nation, mangrove, Lapindo mudflow disaster, NDVI
Procedia PDF Downloads 4383273 Antidiabetic and Antihyperlipaemic Effects of Aqueous Neem (Azadirachta Indica) Extract on Alloxan Diabetic Rabbits
Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed
Abstract:
Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models and their effects confirmed. Neem or Margose (Azadirachta Indica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic and many other properties. This paper deals with a comparative study of the effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day), as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly, decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL(very low-density lipoproteins) and LDL(low-density lipoproteins) but significantly increased (P<0.05) the concentration of HDL(high-density lipoprotein). The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.Keywords: neem, hypoglycemic, hypolipidemic, cholesterol
Procedia PDF Downloads 2653272 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study
Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh
Abstract:
Ammonium nitrate (NH₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension
Procedia PDF Downloads 2303271 Microvoid Growth in the Interfaces during Aging
Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim
Abstract:
Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.Keywords: electroplating, additive, microvoid, intermetallic compound
Procedia PDF Downloads 2593270 Nonparametric Copula Approximations
Authors: Serge Provost, Yishan Zang
Abstract:
Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation
Procedia PDF Downloads 733269 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay
Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer
Abstract:
For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength
Procedia PDF Downloads 1373268 Falling and Rising of Solid Particles in Thermally Stratified Fluid
Authors: Govind Sharma, Bahni Ray
Abstract:
Ubiquitous nature of particle settling is governed by the presence of the surrounding fluid medium. Thermally stratified fluid alters the settling phenomenon of particles as well as their interactions. Direct numerical simulation (DNS) is carried out with an open-source library Immersed Boundary Adaptive Mesh Refinement (IBAMR) to quantify the fundamental mechanism based on Distributed Lagrangian Multiplier (DLM). The presence of background density gradient due to thermal stratification replaces the drafting-kissing-tumbling in a homogeneous fluid to drafting-kissing-separation behavior. Simulations are performed with a varying range of particle-fluid density ratios, and it is shown that the stratification effect on particle interactions varies with density ratio. It is observed that the combined role of buoyancy and inertia govern the physical mechanism of particle-particle interaction.Keywords: direct numerical simulation, distributed lagrangian multiplier, rigidity constraint, sedimentation, stratification
Procedia PDF Downloads 1363267 Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing
Authors: Dhyaalddin Bahaalddin Noori Zangana
Abstract:
This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width.Keywords: square footing, relative density, linear density of reinforcement, bearing capacity ratio, load-settlement behaviour
Procedia PDF Downloads 983266 Effect of Aerobic Exercise on Estrogen Hormone and Bone Mineral Density in Osteoporotic Women
Authors: Noha Mohamed Abdelhafez Dahy, Azza Abd El-Aziz, Eman Ahmed, Marwa El-Sayed
Abstract:
Osteoporosis is a metabolic bone disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture, which leads to compromised bone strength and an increased risk of fracture, commonly it occurs in women 10-15 years after menopause, the mean age of menopause is 51 years. Menopause is natural physiological changes primary because of decline of ovaries function with age which leads to decrease of estrogen hormone production which is the main hormone for bone continuous remodeling for bone density maintenance. Exercise increase stimulation of bone growth to keep bone mass by the effect of the mechanical stimulation, antigravity loading and stress exerted on musculoskeletal muscles. Purpose: This study aimed to determine the effect of aerobic exercise on estrogen hormone and bone mineral density (BMD) in osteoporotic women and the correlation between the estrogen and BMD.Keywords: Osteoporosis, Postmenopause, Aerobic exercise, DEXA, Serum Estrogen
Procedia PDF Downloads 883265 3D Quantum Simulation of a HEMT Device Performance
Authors: Z. Kourdi, B. Bouazza, M. Khaouani, A. Guen-Bouazza, Z. Djennati, A. Boursali
Abstract:
We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.Keywords: HEMT, Silvaco, field plate, genetic algorithm, quantum
Procedia PDF Downloads 4763264 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen
Authors: Bawadi M. A., Abbad J. A., Baras E. A.
Abstract:
This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model
Procedia PDF Downloads 833263 Topology Optimization of Structures with Web-Openings
Authors: D. K. Lee, S. M. Shin, J. H. Lee
Abstract:
Topology optimization technique utilizes constant element densities as design parameters. Finally, optimal distribution contours of the material densities between voids (0) and solids (1) in design domain represent the determination of topology. It means that regions with element density values become occupied by solids in design domain, while there are only void phases in regions where no density values exist. Therefore the void regions of topology optimization results provide design information to decide appropriate depositions of web-opening in structure. Contrary to the basic objective of the topology optimization technique which is to obtain optimal topology of structures, this present study proposes a new idea that topology optimization results can be also utilized for decision of proper web-opening’s position. Numerical examples of linear elastostatic structures demonstrate efficiency of methodological design processes using topology optimization in order to determinate the proper deposition of web-openings.Keywords: topology optimization, web-opening, structure, element density, material
Procedia PDF Downloads 4723262 Defect Induced Enhanced Photoresponse in Graphene
Authors: Prarthana Gowda, Tushar Sakorikar, Siva K. Reddy, Darim B. Ferry, Abha Misra
Abstract:
Graphene, a two-dimensional carbon allotrope has demonstrated excellent electrical, mechanical and optical properties. A tunable band gap of grapheme demonstrated broad band absorption of light with a response time of picoseconds, however it suffers a fast recombination of the photo generated carriers. Many reports have explored to overcome this problem; in this presentation, we discuss defect induced enhanced photoresponse in a few layer graphene (FLG) due to exposure of infrared (IR) radiation. The two and four-fold enhancement in the photocurrent is achieved by addition of multiwalled carbon nano tubes (MWCNT) to an FLG surface and also creating the wrinkles in the FLG (WG) respectively. In our study, it is also inferred that the photo current generation is highly dependent on the morphological defects on the graphene. It is observed that the FLG (without defects) generates the photo current instantaneously, and after a prolonged exposure to the IR radiation decays the generation rate. Importantly, the presence of MWCNT on FLG enhances the stability and WG presented both stable as well as enhanced photo response.Keywords: graphene, multiwalled carbon nano tubes, wrinkled graphene, photo detector, photo current
Procedia PDF Downloads 4143261 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient
Authors: Qingqing Zhao, Junhong Bai
Abstract:
To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland
Procedia PDF Downloads 3163260 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering
Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau
Abstract:
The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.Keywords: the light–effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons-optical phonon scattering
Procedia PDF Downloads 3403259 Atomic Hydrogen Storage in Hexagonal GdNi5 and GdNi4Cu Rare Earth Compounds: A Comparative Density Functional Theory Study
Authors: A. Kellou, L. Rouaiguia, L. Rabahi
Abstract:
In the present work, the atomic hydrogen absorption trend in the GdNi5 and GdNi4Cu rare earth compounds within the hexagonal CaCu5 type of crystal structure (space group P6/mmm) is investigated. The density functional theory (DFT) combined with the generalized gradient approximation (GGA) is used to study the site preference of atomic hydrogen at 0K. The octahedral and tetrahedral interstitial sites are considered. The formation energies and structural properties are determined in order to evaluate hydrogen effects on the stability of the studied compounds. The energetic diagram of hydrogen storage is established and compared in GdNi5 and GdNi4Cu. The magnetic properties of the selected compounds are determined using spin polarized calculations. The obtained results are discussed with and without hydrogen addition taking into account available theoretical and experimental results.Keywords: density functional theory, hydrogen storage, rare earth compounds, structural and magnetic properties
Procedia PDF Downloads 1133258 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery
Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman
Abstract:
Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium
Procedia PDF Downloads 803257 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications
Authors: Zahid Ali Ghazi
Abstract:
Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon
Procedia PDF Downloads 623256 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies
Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny
Abstract:
Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.Keywords: elastic scattering, optical model, double folding model, density distribution
Procedia PDF Downloads 2903255 Effect of Environmental Factors on Mosquito Larval Abundance in Some Selected Larval Sites in the Kintampo Area of Ghana
Authors: Yussif Tawfiq, Stephen Omari, Kwaku Poku Asante
Abstract:
The abundance of malaria vectors is influenced by micro-ecology, rainfall, and temperature patterns. The main objective of the study was to identify mosquito larval sites for future larval surveys and possible intervention programs. The study was conducted in Kintampo in central Ghana. Twenty larval sites were surveyed. Larval density was determined per cm² of water from each of the various sites. The dipper was used to fetch larvae from the larval sites, and a global positioning system (GPS) was used to identify larvae locations. There was a negative linear relationship between humidity, temperature, pH, and mosquito larval density. GPS of larval sites was taken for easy larval identification. There was the presence of Anopheles mosquito larvae in all polluted waters with Culex larval presence. This shows that Anopheles mosquito larvae are beginning to adapt to survival in polluted waters. The identified breeding sites are going to be useful for future larval surveys and will also help in intervention programs.Keywords: larvae, GPS, dipper, larval density
Procedia PDF Downloads 863254 Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir
Authors: Tarek S. Duzan, Abdulaziz F. Ettir
Abstract:
Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data.Keywords: conventional core analysis (porosity, permeability bulk density) data, VS wave and P-wave velocities, shallow carbonate reservoir in D/J field
Procedia PDF Downloads 3323253 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 993252 Modeling Slow Crack Growth under Thermal and Chemical Effects for Fitness Predictions of High-Density Polyethylene Material
Authors: Luis Marquez, Ge Zhu, Vikas Srivastava
Abstract:
High-density polyethylene (HDPE) is one of the most commonly used thermoplastic polymer materials for water and gas pipelines. Slow crack growth failure is a well-known phenomenon in high-density polyethylene material and causes brittle failure well below the yield point with no obvious sign. The failure of transportation pipelines can cause catastrophic environmental and economic consequences. Using the non-destructive testing method to predict slow crack growth failure behavior is the primary preventative measurement employed by the pipeline industry but is often costly and time-consuming. Phenomenological slow crack growth models are useful to predict the slow crack growth behavior in the polymer material due to their ability to evaluate slow crack growth under different temperature and loading conditions. We developed a quantitative method to assess the slow crack growth behavior in the high-density polyethylene pipeline material under different thermal conditions based on existing physics-based phenomenological models. We are also working on developing an experimental protocol and quantitative model that can address slow crack growth behavior under different chemical exposure conditions to improve the safety, reliability, and resilience of HDPE-based pipeline infrastructure.Keywords: mechanics of materials, physics-based modeling, civil engineering, fracture mechanics
Procedia PDF Downloads 205