Search results for: packed bed reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 907

Search results for: packed bed reactor

697 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor

Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon

Abstract:

Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modelling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modelled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.

Keywords: flow coastdown, loop inertia, modelling, research reactor

Procedia PDF Downloads 502
696 Computer Network Applications, Practical Implementations and Structural Control System Representations

Authors: El Miloudi Djelloul

Abstract:

The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.

Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software

Procedia PDF Downloads 365
695 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 338
694 Small Scale Stationary and Mobile Production of Biodiesel

Authors: Muhammad Yusuf Abduh, Robert Manurung, Hero Jan Heeres

Abstract:

Biodiesel can be produced in small scale mobile units which are designed with local input and demand. Unlike the typical biodiesel production plants, mobile biodiesel unit consiss of a biodiesel production facility placed inside a standard cargo container and mounted on a truck so that it can be transported to a region near the location of raw materials. In this paper, we review the existing concept and unit for the development of community-scale and mobile production of biodiesel. This includes the main reactor technology to produce biodiesel as well as the pre-treatment prior to the reaction unit. The pre-treatment includes the oil-expeller unit to obtain oil from the oilseeds as well as the quality control of the oil before it enters the reaction unit. This paper also discusses the post-treatment after the production of biodiesel. It includes the refining and purification of biodiesel to meet the product specification set by the biodiesel industry.

Keywords: biodiesel, community scale, mobile biodiesel unit, reactor technology

Procedia PDF Downloads 236
693 An Innovative Use of Flow Columns in Electrocoagulation Reactor to Control Water Temperature

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, David Phipps, Ortoneda Pedrola

Abstract:

Temperature is an essential parameter in the electrocoagulation process (EC) as it governs the solubility of electrodes and the precipitates and the collision rate of particles in water being treated. Although it has been about 100 years since the EC technology was invented and applied in water and wastewater treatment, the effects of temperature on the its performance were insufficiently investigated. Thus, the present project aims to fill this gap by an innovative use of perforated flow columns in the designing of a new EC reactor (ECR1). The new reactor (ECR1) consisted of a Perspex made cylinder container supplied with a flow column consisted of perorated discoid electrodes that made from aluminium. The flow column has been installed vertically, half submerged in the water being treated, inside a plastic cylinder. The unsubmerged part of the flow column works as a radiator for the water being treated. In order to investigate the performance of ECR1; water samples with different initial temperatures (15, 20, 25, 30, and 35 °C) to the ECR1 for 20 min. Temperature of effluent water samples were measured using Hanna meter (Model: HI 98130). The obtained results demonstrated that the ECR1 reduced water temperature from 35, 30, and 25 °C to 24.6, 23.8, and 21.8 °C respectively. While low water temperature, 15 °C, increased slowly to reach 19.1 °C after 15 minutes and kept the same level till the end of the treatment period. At the same time, water sample with initial temperature of 20 °C showed almost a steady level of temperature along the treatment process, where the temperature increased negligibly from 20 to 20.1 °C after 20 minutes of treatment. In conclusion, ECR1 is able to control the temperature of water being treated around the room temperature even when the initial temperature was high (35 °C) or low (15 °C).

Keywords: electrocoagulation, flow column, treatment, water temperature

Procedia PDF Downloads 430
692 The Effect of Total Mixture Concentrate Based on Tofu Waste Silage as Feed on Performance of Lambs

Authors: Yafri Hazbi, Zaenal Bachruddin, Nafiatul Umami, Lies Mira Yusiati

Abstract:

The objective of this study was to identify the benefits of total mixture concentrate based on tofu waste silage (TMC-TWS) as ration containing lactic acid bacteria on performance of lambs. Fifteen weaning lambs (2-3 months old) were randomly divided into two treatment groups, treatment group I (TI) was fed with TMC-TWS as ration and treatment group II (TII) was fed with TMC-TWS fresh (without silage fermentation). The performance of lambs was evaluated on day 0, 15, and 30 to have data of body weight per day. Meanwhile, blood sampling and feces were made on the 30th day to get an analysis on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), and leukocytes (mill/ml)) and the number of worm eggs in feces. The results of this study showed no significant difference between the effect of different feed on the blood profile (erythrocytes (mill/ml), hemoglobin (g/dL), packed cell volume (%), as well as the number of worm eggs in the feces. However the results showed significant differences if it is low (P<0.05) due to the treatment group based on sex on body weight gain per day, feed conversion rate and the number of erythrocytes.

Keywords: lambs, total mixture concentrate, silage, acid lactid bacteria, blood profile, eggs worm in feces

Procedia PDF Downloads 178
691 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)

Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo

Abstract:

Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.

Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design

Procedia PDF Downloads 122
690 Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State

Authors: Oluwadele Joshua Femi, Akinlabi Ebenezer Yemi, Onaopemipo Adeitan, Kazeem Bello, Anthony Ekeocha, Miraim Tawose

Abstract:

This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area.

Keywords: blood, chicken, poisonous substances, pack cell volume, communities

Procedia PDF Downloads 85
689 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 155
688 Prevalence of Anaemia Amongst Antenatal Clinic Attendees at Booking: A Nigerian Study

Authors: S Eli, DGB Kalio, BOA Altraide, P Kua, DA MacPepple, FE Okonofua

Abstract:

Background: Anaemia in pregnancy is worrisome morbidity encountered by obstetricians and gynaecologist in the developing countries of the world. It is an indirect cause of maternal mortality and also a cause of perinatal mortality. Aim: The study aimed to ascertain the prevalence of anaemia amongst antenatal clinic (ANC) attendees at booking at The Rivers State University Teaching Hospital (RSUTH), Port Harcourt, Rivers State, Nigeria. Method: The method was a cross-sectional study of ANC attendees at booking at RSUTH. The cut-off for anaemia by the WHO used for this study was packed cell volume (PCV) less than 33%. Simple randomized sampling method was used. Information was analyzed using SPSS version 25. Result: A total of 500 questionnaires were distributed, and 488 questionnaires retrieved. The mean age was of the ANC attendees was 31.44 years, and the modal parity was 0. Three hundred and fifty-seven (73.2%) of the respondents had a tertiary level of education, 126(25.8%) had a secondary level of education while 5 (1%) of the respondents had a primary level of education. Five (1%) of the respondents did not volunteer their educational status. The modal packed cell volume was 32%. Three hundred and eighty-two (78.3%) of the ANC attendees had PCV level less than 33% compared to 106 (21.7%) who had PCV equal or greater than 33%. Conclusion: The study revealed that the prevalence of anaemia in pregnancy amongst ANC attendees at the RSUTH was high, representing 73.3% of the subjects. Anaemia was common amongst multiparas (38.5%). Malaria prophylaxis, as well as encouraging pregnant women to be compliant with their routine antenatal drugs as well as counseling on the right diet, cannot be overemphasized during pregnancy. In addition, women should use family planning for child spacing for them to recover from previous pregnancies.

Keywords: anaemia, ANC attendees, Nigeria, prevalence

Procedia PDF Downloads 120
687 In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment

Authors: Vijay Sodhi, Charanjit Singh, Neelam Sodhi, Puneet P. S. Cheema, Reena Sharma, Mithilesh K. Jha

Abstract:

The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research.

Keywords: tannery wastewater, moving bed biofilm reactor, sludhe yield, sludge minimization, solids retention time

Procedia PDF Downloads 71
686 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 250
685 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 190
684 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: frequency control, nuclear power generation, power system stability, system inertia

Procedia PDF Downloads 437
683 Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim, In Jae Song

Abstract:

The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer.

Keywords: pressure drop, selective catalytic reduction, static mixer, turbulent mixing, uniformity index

Procedia PDF Downloads 935
682 BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition

Authors: Sony, Ashok N. Bhaskarwar

Abstract:

Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production.

Keywords: sulfur-iodine cycle, hydrogen production, hydrogen iodide decomposition, bi-, and tri-metallic catalysts

Procedia PDF Downloads 187
681 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Column: Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors, especially when the water being treated had a low DO (such as leachate and high organic content waters), or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Thus, the present project aims to fill a part of this gap in the literature by an innovative use of perforated flow columns in the design of an EC reactor (ECR1). In order to investigate the performance of ECR1, water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L, which is equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: flow column, electrocoagulation, dissolved oxygen, water treatment

Procedia PDF Downloads 341
680 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production

Authors: Ismail S. Bostanci, Ebru Akkaya

Abstract:

Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.

Keywords: contamination control, microalgae culture contamination, pond crash, predator control

Procedia PDF Downloads 207
679 Food Waste Management in the Restaurant Industry

Authors: Vijayakumar Karunamoothei, Stephen Wylie, Andy Shaw, Al Shamma'A Ahmed

Abstract:

The main aim of this research is to investigate, analyse and provide solutions for the reduction of food waste in the restaurant industry. The amount of food waste that is sent to landfill by UK restaurants and food chains is considerably high, and also acts as an additional cost to the restaurants, as well as being a significant environmental issue. Food waste, for the most part, is disposed in landfill, but due to rising costs associated with waste disposal, it increases public concerns about the environmental issue. This makes conversion of food waste to energy an economic solution. The relevant properties, such as water content and calorific value, will vary considerably, depending on the particular type of food. This work, therefore, includes the collection and analysis of real data from restaurants on weekly basis. It will also investigate how the waste destined for landfill can be instead reused to produce fuels such as syngas or ethanol, or alternatively as fertilizer. The potential for syngas production will be tested using a microwave plasma reactor.

Keywords: fertilizer, microwave, plasma reactor, syngas

Procedia PDF Downloads 359
678 Single-Section Fermentation Reactor with Cellular Mixing System

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

This publication presents a reactor designed for methane fermentation of organic substrates. The design is based on rotating cellular cylinders connected to a biomass feeder and an ultrasonic generator. This allows for simultaneous mixing and partial disintegration of the biomass, as well as stimulating higher metabolic rates within the microorganisms. Such a design allows from 2-fold to 14-fold reduction of power usage when compared to conventional mixing systems. The sludge does not undergo mechanical deformation during the mixing process, which improves substrate biodegradation efficiency by 10-15%. Cavitation occurs near the surface of the rods, partially releasing the biomass and separating it from the destroyed microorganisms. Biogas is released further away from the cellular cylinder rods due to the effect of the ultrasonic waves, in addition to increased biochemical activity of the microorganisms and increased exchange of the nutrient medium with metabolic products, which results in biogas production increase by about 15%.

Keywords: methane fermentation, bioreactors, biomass, mixing system

Procedia PDF Downloads 530
677 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 287
676 The Use of Solar Energy for Cold Production

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

—It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia.

Keywords: adsorption, adsorbent-adsorbate pair, finned reactor, numerical modeling, solar energy

Procedia PDF Downloads 18
675 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 366
674 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 333
673 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation

Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes

Abstract:

Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.

Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor

Procedia PDF Downloads 136
672 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.

Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture

Procedia PDF Downloads 184
671 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 520
670 Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed.

Keywords: Listeria innocua ATCC 33092, inactivation, gas phase plasma, cellular leakage, recovery of cells

Procedia PDF Downloads 176
669 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock

Authors: Tumisang Seodigeng, Hilary Rutto

Abstract:

In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.

Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten

Procedia PDF Downloads 497
668 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 163