Search results for: cumulative energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8497

Search results for: cumulative energy

8287 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.

Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark

Procedia PDF Downloads 332
8286 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 404
8285 Bounds on the Laplacian Vertex PI Energy

Authors: Ezgi Kaya, A. Dilek Maden

Abstract:

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.

Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index

Procedia PDF Downloads 219
8284 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test

Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour

Abstract:

Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.

Keywords: sandwich panel, aluminium foam, perforation, energy absorption

Procedia PDF Downloads 404
8283 Nearly Zero-Energy Regulation and Buildings Built with Prefabricated Technology: The Case of Hungary

Authors: András Horkai, Attila Talamon, Viktória Sugár

Abstract:

There is an urgent need nowadays to reduce energy demand and the current level of greenhouse gas emission and use renewable energy sources increase in energy efficiency. On the other hand, the European Union (EU) countries are largely dependent on energy imports and are vulnerable to disruption in energy supply, which may, in turn, threaten the functioning of their current economic structure. Residential buildings represent a significant part of the energy consumption of the building stock. Only a small part of the building stock is exchanged every year, thus it is essential to increase the energy efficiency of the existing buildings. Present paper focuses on the buildings built with industrialized technology only, and their opportunities in the boundaries of nearly zero-energy regulation. Current paper shows the emergence of panel construction method, and past and present of the ‘panel’ problem in Hungary with a short outlook to Europe. The study shows as well as the possibilities for meeting the nearly zero and cost optimized requirements for residential buildings by analyzing the renovation scenarios of an existing residential typology.

Keywords: Budapest, energy consumption, industrialized technology, nearly zero-energy buildings

Procedia PDF Downloads 327
8282 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation

Authors: Manoj Kumar, Rajesh Kumar

Abstract:

With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.

Keywords: depletion of reserves, energy consumption and generation, emmissions, global warming, renewable sources

Procedia PDF Downloads 409
8281 Photovoltaic System: An Alternative to Energy Efficiency in a Residence

Authors: Arsenio Jose Mindu

Abstract:

The concern to carry out a study related to Energy Efficiency arose based on the various debates in international television networks and not only, but also in several forums of national debates. The concept of Energy Efficiency is not yet widely disseminated and /or taken into account in terms of energy consumption, not only at the domestic level but also at the industrial level in Mozambique. In the context of the energy audit, the time during which each of the appliances is connected to the voltage source, the time during which they are in standby mode was recorded on a spreadsheet basis. Based on these data, daily and monthly consumption was calculated. In order to have more accurate information on the daily levels of daily consumption, the electricity consumption was read every hour of the day (from 5:00 am to 11:00 pm), since after 23:00 the energy consumption remains constant. For ten days. Based on the daily energy consumption and the maximum consumption power, the design of the photovoltaic system for the residence was made. With the implementation of the photovoltaic system in order to guarantee energy efficiency, there was a significant reduction in the use of electricity from the public grid, increasing from approximately 17 kwh per day to around 11 kwh, thus achieving an energy efficiency of 67.4 %. That is to say, there was a reduction not only in terms of the amount of energy consumed but also of the monthly expenses with electricity, having increased from around 2,500,00Mt (2,500 meticais) to around 800Mt per month.

Keywords: energy efficiency, photovoltaic system, residential sector, Mozambique

Procedia PDF Downloads 184
8280 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 609
8279 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis

Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales

Abstract:

This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.

Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis

Procedia PDF Downloads 174
8278 Exergy Analyses of Wind Turbine

Authors: Muhammad Abid

Abstract:

Utilization of renewable energy resources for energy conservation, pollution prevention, resource efficiency and systems integration is very important for sustainable development. In this study, we perform energy and exergy analyses of a wind turbine, located on the roof of Mechanical Engineering Department, King Saud University, and Riyadh, Saudi Arabia. The turbine is part of a hybrid photovoltaic (PV)-wind system with hydrogen storage. The power output from this turbine varies between 1.5 and 5.5 kW with a rated wind speed of 12 m/s and a cut-in wind speed of 2.4 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine energy and exergy efficiencies. The energy efficiency changes between 0% to 45% while the exergy efficiency varies between 0% and 31.3%. We also determined some of the exergoeconomic parameters that are the ratios of energy and exergy loss rates to the capital cost (R en and R ex), respectively. (R en) changes between 0.96% and 59.03% for different values of velocity while R ex has a maximum value of 53.62% for the highest wind speed.

Keywords: exergy, efficiency, performance evaluation, wind energy

Procedia PDF Downloads 345
8277 UV Functionalised Short Implants as an Alternative to Avoid Crestal Sinus Lift Procedure: Controlled Case Series

Authors: Naira Ghambaryan, Gagik Hakobyan

Abstract:

Purpose:The study was to evaluate the survival rate of short implants (5-6 mm) functionalized with UV radiation placed in the posterior segments of the atrophied maxilla. Materials and Methods:The study included 47 patients with unilateral/bilateral missing teeth and vertical atrophy of the posterior maxillary area. A total of 64 short UV-functionalized implants and 62 standard implants over 10 mm in length were placed in patients. The clinical indices included the following parameters: ISQБ MBL, OHIP-G scale. Results: For short implants, the median ISQ at placement was 62.2 for primary stability, and the median ISQ at 5 months was 69.6 ISQ. For standart implant, the mean ISQ at placement was 64.3 ISQ, and ISQ after 5 months was 71.6 ISQ. Аfter 6 months mean MBL short implants 0.87 mm, after 1 year, 1.13 mm, after 5 year was 1.48 mm. Аfter 6 months, mean MBL standard implants 0.84 mm, after 1 year, 1.24 mm, after 5 year was 1.58 mm. Mean OHIP-G scores -patients satisfaction with the implant at 4.8 ± 0.3, satisfaction with the operation 4.6 ± 0.4; satisfaction with prosthetics 4.7 ± 0.5. Cumulative 5-year short implants rates was 96.7%, standard implants was 97.4%, and prosthesis cumulative survival rate was 97.2%. Conclusions: Short implants with ultraviolet functionalization for prosthetic rehabilitation of the posterior resorbed maxilla region is a reliable, reasonable alternative to sinus lift, demonstrating fewer complications, satisfactory survival of a 5-year follow-up period, and reducing the number of additional surgical interventions and postoperative complications.

Keywords: short implant, ultraviolet functionalization, atrophic posterior maxilla, prosthodontic rehabilitation

Procedia PDF Downloads 62
8276 Sustainability of Environment and Green Energy Strategies Comprehensive Analysis

Authors: Vahid Pirooznia

Abstract:

In this think about we propose a few green vitality procedures for feasible advancement. In this respect, seven green energy methodologies are taken into thought to decide the sectoral, innovative, and application affect proportions. Based on these proportions, we determine a modern parameter as the green energy affect proportion. In expansion, the green energy-based supportability proportion is gotten by depending upon the green energy affect proportion, and the green energy utilization proportion that's calculated utilizing real vitality information taken from literature. In arrange to confirm these parameters, three cases are considered. Subsequently, it can be considered that the sectoral affect proportion is more imperative and ought to be kept consistent as much as conceivable in a green vitality arrangement usage. In addition, the green energy-based supportability proportion increments with an increment of mechanical, sectoral, and application affect proportions. This implies that all negative impacts on the mechanical, innovative, sectoral and social improvements mostly and/or totally diminish all through the move and utilization to and of green energy and advances when conceivable feasible sustainable economic feasible maintainable energy techniques are favored and connected. Hence, the economical energy methodologies can make an imperative commitment to the economies of the nations where green energy (e.g., wind, sun based, tidal, biomass) is inexhaustibly created. Hence, the speculation in green energy supply and advance ought to be energized by governments and other specialists for a green energy substitution of fossil powers for more ecologically generous and feasible future.

Keywords: green energy, environment, sustainable, development

Procedia PDF Downloads 52
8275 Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis

Authors: T. Tulwin, M. Gęca, R. Sochaczewski

Abstract:

Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented.

Keywords: aircraft, propulsion , efficiency, storage

Procedia PDF Downloads 153
8274 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming

Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar

Abstract:

H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.

Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production

Procedia PDF Downloads 74
8273 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 47
8272 Water Heating System with Solar Energy from Solar Panel as Absorber to Reduce the Reduction of Efficiency Solar Panel Use

Authors: Mas Aji Rizki Widjayanto, Rizka Yunita

Abstract:

The building which has an efficient and low-energy today followed by the developers. It’s not because trends on the building nowaday, but rather because of its positive effects in the long term, where the cost of energy per month to be much cheaper, along with the high price of electricity. The use of solar power (Photovoltaic System) becomes one source of electrical energy for the apartment so that will efficiently use energy, water, and other resources in the operations of the apartment. However, more than 80% of the solar radiation is not converted into electrical energy, but reflected and converted into heat energy. This causes an increase on the working temperature of solar panels and consequently decrease the efficiency of conversion to electrical energy. The high temperature solar panels work caused by solar radiation can be used as medium heat exchanger or heating water for the apartments, so that the working temperature of the solar panel can be lowered to reduce the reduction on the efficiency of conversion to electrical energy.

Keywords: photovoltaic system, efficient, heat energy, heat exchanger, efficiency of conversion

Procedia PDF Downloads 332
8271 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: cost of energy (COE) tool, sea state, wave energy converter (WEC), WEC-Sim

Procedia PDF Downloads 272
8270 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters

Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud

Abstract:

Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.

Keywords: energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation

Procedia PDF Downloads 431
8269 A Review of Renewable Energy Conditions in Iran Country

Authors: Ehsan Atash Zaban, Mehdi Beyk

Abstract:

In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.

Keywords: renewable energy, solar stations, wind, biomass, hydropower

Procedia PDF Downloads 73
8268 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software

Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh

Abstract:

Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.

Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts

Procedia PDF Downloads 116
8267 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 552
8266 The Politics of Renewable Energy Generation and Its Challenges: A Case Study of Iran

Authors: Naresh Kumar Verma

Abstract:

Nuclear energy being adapted as a renewable energy source and its production by developing countries has turned into a major strategic concern and politics by the developed world. The West seem to be the sole proprietor of such energy source and any country opting for such energy production either face significant hurdles or geopolitical challenges in developing such energy source. History of West Asia is full of interference by external powers which has been integral in the incessant conflict in the region. Whether it was the creation of Israel, the Gulf war of 1991, or the invasion of Iraq in 2003, and more recently the Iranian nuclear conundrum, the soil of West Asia has always been a witness to the play of extra regional powers game. Iran, being a theocratic state has been facing such threats and challenges, regarding its intentions and its capability in such energy production. The paper will try to assess the following issues: -Politics of Renewable Energy Generation. -Geographical and strategic significance of Iran’s nuclear programme. -Challenges in the path of Iran developing nuclear energy as a RE source. -The interests of the regional and extra-regional actors in challenging Iranian Nuclear Programme.

Keywords: developing countries, geopolitics, Iran, nuclear energy, renewable energy

Procedia PDF Downloads 609
8265 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine

Authors: Mohan H., C. Elajchet Senni

Abstract:

In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.

Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester

Procedia PDF Downloads 267
8264 Acoustic and Thermal Compliance from the Execution Theory

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects. However, an overwhelming issue of existing non-energy efficient buildings which exceeds the number of new building could be ineffective if the buildings are not refurbished through the energy efficient measures. Thus, energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability that offers significant opportunities for reducing global energy consumption and greenhouse gas emissions. However, the quality of design team attributes and the characteristics of the refurbishment building projects have been argued to be the main factors that determine the energy efficiency performance of the building.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 344
8263 Household Energy Usage in Nigeria: Emerging Advances for Sustainable Development

Authors: O. A. Akinsanya

Abstract:

This paper presents the emerging trends in household energy usage in Nigeria for sustainable development. The paper relied on a direct appraisal of energy use in the residential sector and the use of a structured questionnaire to establish the usage pattern, energy management measures and emerging advances. The use of efficient appliances, retrofitting, smart building and smart attitude are some of the benefitting measures. The paper also identified smart building, prosumer activities, hybrid energy use, improved awareness, and solar stand-alone street/security lights as the trend and concluded that energy management strategies would result in a significant reduction in the monthly bills and peak loads as well as the total electricity consumption in Nigeria and therefore it is good for sustainable development.

Keywords: household, energy, trends, strategy, sustainable, Nigeria

Procedia PDF Downloads 45
8262 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting

Procedia PDF Downloads 49
8261 Distributed Energy System - Microgrid Integration of Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Planning a hybrid power system (HPS) that integrates renewable generation sources, non-renewable generation sources and energy storage, involves determining the capacity and size of various components to be used in the system to be able to supply reliable electricity to the connected load as required. Nowadays it is very common to integrate solar photovoltaic (PV) power plants for renewable generation as part of HPS. The solar PV system is usually balanced via a second form of generation (renewable such as wind power or using fossil fuels such as a diesel generator) or an energy storage system (such as a battery bank). Hybrid power systems can also provide other forms of power such as heat for some applications. Modern hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, grid code compliance

Procedia PDF Downloads 128
8260 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques

Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit

Abstract:

Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.

Keywords: maize stover, urea treatment, ruminant feed, gas production

Procedia PDF Downloads 201
8259 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.

Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke

Procedia PDF Downloads 320
8258 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator

Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma

Abstract:

The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.

Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS

Procedia PDF Downloads 634