Search results for: convective dissolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 449

Search results for: convective dissolution

239 Rheological Properties of Cellulose/TBAF/DMSO Solutions and Their Application to Fabrication of Cellulose Hydrogel

Authors: Deokyeong Choe, Jae Eun Nam, Young Hoon Roh, Chul Soo Shin

Abstract:

The development of hydrogels with a high mechanical strength is important for numerous applications of hydrogels. As a material for tough hydrogels, cellulose has attracted much interest. However, cellulose cannot be melted and is very difficult to be dissolved in most solvents. Therefore, its dissolution in tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO) solvents has attracted researchers for chemical processing of cellulose. For this reason, studies about rheological properties of cellulose/TBAF/DMSO solution will provide useful information. In this study, viscosities of cellulose solutions prepared using different amounts of cellulose and TBAF in DMSO were measured. As expected, the viscosity of cellulose solution decreased with respect to the increasing volume of DMSO. The most viscose cellulose solution was achieved at a 1:1 mass ratio of cellulose to TBAF regardless of their contents in DMSO. At a 1:1 mass ratio of cellulose to TBAF, the formation of cellulose nanoparticles (467 nm) resulted in a dramatic increase in the viscosity, which led to the fabrication of 3D cellulose hydrogels.

Keywords: cellulose, TBAF/DMSO, viscosity, hydrogel

Procedia PDF Downloads 226
238 Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System

Authors: Modreck Gomo

Abstract:

Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.

Keywords: acid mine drainage, carbonates, neutralization, salinity

Procedia PDF Downloads 122
237 Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined

Authors: Mohamed Ben Amar, Henda Barhoumi, Hokia Siala, Foued Elhalouani

Abstract:

The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation.

Keywords: squeeze casting, process parameters, heat treatment, ductility, microstructure

Procedia PDF Downloads 413
236 One Dimensional Unsteady Boundary Layer Flow in an Inclined Wavy Wall of a Nanofluid with Convective Boundary Condition

Authors: Abdulhakeem Yusuf, Yomi Monday Aiyesimi, Mohammed Jiya

Abstract:

The failure in an ordinary heat transfer fluid to meet up with today’s industrial cooling rate has resulted in the development of high thermal conductivity fluid which nanofluids belongs. In this work, the problem of unsteady one dimensional laminar flow of an incompressible fluid within a parallel wall is considered with one wall assumed to be wavy. The model is presented in its rectangular coordinate system and incorporates the effects of thermophoresis and Brownian motion. The local similarity solutions were also obtained which depends on Soret number, Dufour number, Biot number, Lewis number, and heat generation parameter. The analytical solution is obtained in a closed form via the Adomian decomposition method. It was found that the method has a good agreement with the numerical method, and it is also established that the heat generation parameter has to be kept low so that heat energy are easily evacuated from the system.

Keywords: Adomian decomposition method, Biot number, Dufour number, nanofluid

Procedia PDF Downloads 309
235 Study of Nucleation and Growth Processes of Ettringite in Supersaturated Diluted Solutions

Authors: E. Poupelloz, S. Gauffinet

Abstract:

Ettringite Ca₆Al₂(SO₄)₃(OH)₁₂26H₂O is one of the major hydrates formed during cement hydration. Ettringite forms in Portland cement from the reaction between tricalcium aluminate Ca₃Al₂O₆ and calcium sulfate. Ettringite is also present in calcium sulfoaluminate cement in which it is the major hydrate, formed by the reaction between yeelimite Ca₄(AlO₂)₆SO₄ and calcium sulfate. About the formation of ettringite, numerous results are available in the literature even if some issues are still under discussion. However, almost all published work about ettringite was done on cementitious systems. Yet in cement, hydration reactions are very complex, the result of dissolution-precipitation processes and are submitted to various interactions. Understanding the formation process of a phase alone, here ettringite, is the first step to later understand the much more complex reactions happening in cement. This study is crucial for the comprehension of early cement hydration and physical behavior. Indeed formation of hydrates, in particular, ettringite, will have an influence on the rheological properties of the cement paste and on the need for admixtures. To make progress toward the understanding of existing phenomena, a specific study of nucleation and growth processes of ettringite was conducted. First ettringite nucleation was studied in ionic aqueous solutions, with controlled but different experimental conditions, as different supersaturation degrees (β), different pH or presence of exogenous ions. Through induction time measurements, interfacial ettringite crystals solution energies (γ) were determined. Growth of ettringite in supersaturated solutions was also studied through chain crystallization reactions. Specific BET surface area measurements and Scanning Electron Microscopy observations seemed to prove that growth process is favored over the nucleation process when ettringite crystals are initially present in a solution with a low supersaturation degree. The influence of stirring on ettringite formation was also investigated. Observation was made that intensity and nature of stirring have a high influence on the size of ettringite needles formed. Needle sizes vary from less than 10µm long depending on the stirring to almost 100µm long without any stirring. During all previously mentioned experiments, initially present ions are consumed to form ettringite in such a way that the supersaturation degree with regard to ettringite is decreasing over time. To avoid this phenomenon a device compensating the drop of ion concentrations by adding some more solutions, and therefore always have constant ionic concentrations, was used. This constant β recreates the conditions of the beginning of cement paste hydration, when the dissolution of solid reagents compensates the consumption of ions to form hydrates. This device allowed the determination of the ettringite precipitation rate as a function of the supersaturation degree β. Taking samples at different time during ettringite precipitation and doing BET measurements allowed the determination of the interfacial growth rate of ettringite in m²/s. This work will lead to a better understanding and control of ettringite formation alone and thus during cements hydration. This study will also ultimately define the impact of ettringite formation process on the rheology of cement pastes at early age, which is a crucial parameter from a practical point of view.

Keywords: cement hydration, ettringite, morphology of crystals, nucleation-growth process

Procedia PDF Downloads 109
234 Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy

Authors: Pooyan Changizian, Zhongwen Yao

Abstract:

The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples.

Keywords: Inconel X-750, nanoindentation, helium bubbles, defects

Procedia PDF Downloads 201
233 Investigating Convective Boiling Heat Transfer Characteristics of R-1234ze and R-134a Refrigerants in a Microfin and Smooth Tube

Authors: Kaggwa Abdul, Chi-Chuan Wang

Abstract:

This research is based on R-1234ze that is considered to substitute R-134a due to its low global warming potential in a microfin tube with outer diameter 9.52 mm, number of fins 70, and fin height 0.17 mm. In comparison, a smooth tube with similar geometries was used to study pressure drop and heat transfer coefficients related to the two fluids. The microfin tube was brazed inside a stainless steel tube and heated electrically. T-type thermocouples used to measure the temperature distribution during the phase change process. The experimental saturation temperatures and refrigerant mass velocities varied from 10 – 20°C and 50 – 300 kg/m2s respectively. The vapor quality from 0.1 to 0.9, and heat flux ranged from 5 – 11kW/m2. The results showed that heat transfer performance of R-134a in both microfin and smooth tube was better than R-1234ze especially at mass velocities above G = 50 kg/m2s. However, at low mass velocities below G = 100 kg/m2s R-1234ze yield better heat transfer coefficients than R-134a. The pressure gradient of R-1234ze was markedly higher than that of R-134a at all mass flow rates.

Keywords: R-1234ze and R-134a, horizontal flow boiling, pressure drop, heat transfer coefficients, micro-fin and smooth tubes

Procedia PDF Downloads 266
232 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore

Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan

Abstract:

The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.

Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore

Procedia PDF Downloads 267
231 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study

Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier

Abstract:

An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.

Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house

Procedia PDF Downloads 397
230 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen

Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar

Abstract:

Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.

Keywords: zaltoprofen, chitosan, formulation, drug delivery

Procedia PDF Downloads 429
229 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 314
228 Heat Transfer in Direct-Driven Generator for Large-Scaled Wind Turbine

Authors: Dae-Gyun Ahn, Eun-Teak Woo, Yun-Hyun Cho, Seung-Ho Han

Abstract:

For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind generators such as the Axial Flux Permanent Magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5MW. In this study, a newly developed conductive-type cooling system was proposed for the 2.5MW AFPM generator installed on an offshore wind turbine. Through electromagnetic thermal analysis, the efficiency of the heat transfer on the stator surface was investigated. When using the proposed cooling system, the temperatures on the stator surface and on the permanent magnet under conditions of thermal saturation were 76 and 66 C, respectively. (KETEP 20134030200320)

Keywords: heat transfer, thermal analysis, axial flux permanent magnet, conductive-type cooling system

Procedia PDF Downloads 416
227 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 149
226 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 135
225 Internal Corrosion Rupture of a 6-in Gas Line Pipe

Authors: Fadwa Jewilli

Abstract:

A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition.

Keywords: gas line pipe, corrosion prediction ductile fracture, ductile fracture, failure analysis

Procedia PDF Downloads 66
224 Investigation of the Cathodic Behavior of AA2024-T3 in Neutral Medium

Authors: Nisrine Benzbiria, Mohammed Azzi, Mustapha Zertoubi

Abstract:

2XXX series of aluminum alloys are widely employed in several applications, such as beverages, automotive, and aerospace industries. However, they are particularly prone to localized corrosion, such as pitting, often induced by a difference in corrosion potential measured for intermetallic phases and pure metal. The galvanic cells comprising Al–Cu– Mn–Fe intermetallic phases control cathodically the dissolution rate as oxygen reduction reaction kinetics are privileged on Al–Cu–Mn–Fe particles. Hence, understanding the properties of cathode sites and the processes involved must be carried out. Our interest is to outline the cathodic behavior of AA2024-T3 in sodium sulfate solution using electrochemical techniques. Oxygen reduction reaction (ORR) was investigated in the mixed charge transfer and mass transport regime using the Koutecky-Levich approach. An environmentally benign inhibitor was considered to slow the ORR on the Cu-rich cathodic phases. The surface morphology of the electrodes was investigated with SEM/EDS and AFM. The obtained results were discussed accordingly.

Keywords: AA2024-T3, neutral medium, ORR kinetics, Koutecky-Levich, DFT

Procedia PDF Downloads 28
223 Effects of Temperature Dryer on Allicin and Pirvic Acid Measurments Garlic Powder after Drying Process

Authors: Rezvani Aghdam Ali, Aleemrani Nejad Seyed Mohammad Hossein

Abstract:

Introduction: Dryed Garlic has plentiful health and medicinal value and is used in industrial food the forms of flakes or powders. Many health and medicinal properties of Garlic are attributed to allicin. This substance is produced enzymatically after crushing. Since temperature affected on enzymatic action, then is important factor on pirovic acid and allicin retention. Materials and Methods: This study investigated the effects of temperature on qualitative characteristics such as color of powder and pirovic acid and alicin retention in a convective hot-air dryer. For this reason, half cloves of Shushtar Garlics (Allium sativum L.) were dried at air temperatures of 50 and 70°C. Results: Results showed that increasing temperature was resulted changing color. Pirovic acid increased when half cloves Garlic were dried at 70°C. Allicin of half cloves also increased with increasing temperature. Conclusions: According to findings of this research, half cloves which dried in 70 degree centigrade can be introduced the best conditions for producing Garlic powder.

Keywords: garlic, drying, pirovic acid, allicin

Procedia PDF Downloads 311
222 Simulating the Unseen: David Cronenberg’s Body Horror through Baudrillard’s Lens

Authors: Mario G. Rodriguez

Abstract:

This paper undertakes an in-depth exploration of David Cronenberg's filmography through Jean Baudrillard's theory of simulacra and simulation. Little has been written to show how Cronenberg’s cinema exemplifies Baudrillard’s conceptualization of postmodernity. The study employs Baudrillard’s historical orders of simulacra, as well as his definitions of hyperreality and simulation, to recontextualize Cronenberg’s films in an era characterized by the increasing influence of media and technology and Cronenberg's oeuvre presents a compelling canvas for examining the interplay between the real and the simulated. Through films like "Videodrome" (1983), "The Fly" (1986), and "eXistenZ" (1999), Cronenberg navigates the complex terrain of the human body, technology, and societal perceptions, echoing Baudrillard's concerns about the hyperreal and the dissolution of reality. The study concludes with a consideration of the role of "body-horror" as it pertains to Baudrillard's theory. It sheds light on how fear of loss of bodily autonomy, the relationship between technology and the human body, and the intersection of science, medicine, and horror reflect the nature of hyperreality and simulation.

Keywords: Cronenberg, hyperreality, simulation, Baudrillard

Procedia PDF Downloads 45
221 Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting

Authors: Divya Haridas, C. B. Sobhan

Abstract:

Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used.

Keywords: Mach-Zehnder interferometer (MZI), natural convection, Naylor method, Vertical Flat Plate

Procedia PDF Downloads 346
220 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity

Authors: Tania Sharmin Khaleque, Mohammad Ferdows

Abstract:

The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.

Keywords: free convection, heat generation, thermal diffusivity, variable viscosity

Procedia PDF Downloads 329
219 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process

Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani

Abstract:

An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.

Keywords: single and double bubbles, electric field, boiling, rising

Procedia PDF Downloads 207
218 Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in A Porous Medium with Throughflow

Authors: N. Deepika, P. A. L. Narayana

Abstract:

Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is computed. Linear stability analysis has been implemented numerically by using Runge-kutta method. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source $\gamma$. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. For sufficient value of Pe, $\gamma$ has considerable destabilizing effect for upward throughflow, insignificant destabilizing effect for downward throughflow.

Keywords: porous medium, concentration based internal heat source, vertical throughflow, viscous dissipation

Procedia PDF Downloads 440
217 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition

Authors: H. Niranjan, S. Sivasankaran, Zailan Siri

Abstract:

This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, soret/dufour, stagnation-point

Procedia PDF Downloads 348
216 Effects of Different Calcination Temperature on the Geopolymerization of Fly Ash

Authors: Nurcan Tugrul, Funda Demir, Hilal Ozkan, Nur Olgun, Emek Derun

Abstract:

Geopolymers are aluminosilicate-containing materials. The raw materials of the geopolymerization can be natural material such as kaolinite, metakaolin (calcined kaolinite), clay, diatomite, rock powder or can also be industrial by-products such as fly ash, silica fume, blast furnace slag, rice-husk ash, mine tailing, red mud, waste slag, etc. Reactivity of raw materials in geopolymer production is very important for achieving high reaction grade. Fly ash used in geopolymer production has been calcined to obtain tetrahedral SiO₂ and Al₂O₃ structures. In this study, fly ash calcined at different temperatures (700, 800 and 900 °C), and Al₂O₃ addition (Al₂O₃ at min (0%) and max (100%)) were used to produce geopolymers. HCl dissolution method was applied to determine the geopolymerization percentage of samples and Fourier Transform Infrared (FTIR) Spectroscopy was used to find out the optimum calcination temperature for geopolymerization. According to obtained results, the highest geopolymerization percentage (0% alumina added geopolymer equal to 35.789%; 100% alumina added geopolymer equal to 40.546%) was obtained in samples using fly ash calcined at 800 °C.

Keywords: geopolymer, fly ash, Al₂O₃ addition, calcination

Procedia PDF Downloads 158
215 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 76
214 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger

Authors: Eyuphan Manay

Abstract:

In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.

Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger

Procedia PDF Downloads 173
213 Thermomechanical Processing of a CuZnAl Shape-Memory Alloy

Authors: Pedro Henrique Alves Martins, Paulo Guilherme Ferreira De Siqueira, Franco De Castro Bubani, Maria Teresa Paulino Aguilar, Paulo Roberto Cetlin

Abstract:

Cu-base shape-memory alloys (CuZnAl, CuAlNi, CuAlBe, etc.) are promising engineering materials for several unconventional devices, such as sensors, actuators, and mechanical vibration dampers. Brittleness is one of the factors that limit the commercial use of these alloys, as it makes thermomechanical processing difficult. In this work, a method for the hot extrusion of a 75.50% Cu, 16,74% Zn, 7,76% Al (weight %) alloy is presented. The effects of the thermomechanical processing in the microstructure and the pseudoelastic behavior of the alloy are assessed by optical metallography, compression and hardness tests. Results show that hot extrusion is a suitable method to obtain severe cross-section reductions in the CuZnAl shape-memory alloy studied. The alloy maintained its pseudoelastic effect after the extrusion and the modifications in the mechanical behavior caused by precipitation during hot extrusion can be minimized by a suitable precipitate dissolution heat treatment.

Keywords: hot extrusion, pseudoelastic, shape-memory alloy, thermomechanical processing

Procedia PDF Downloads 353
212 Thermal Resistance of Special Garments Exposed to a Radiant Heat

Authors: Jana Pichova, Lubos Hes, Vladimir Bajzik

Abstract:

Protective clothing is designed to keep a wearer save in hazardous conditions or enable perform short time working operation without being injured or feeling discomfort. Firefighters or other related workers are exposed to abnormal heat which can be conductive, convective or radiant type. Their garment is proposed to resist this conditions and prevent burn injuries or dead of human. However thermal comfort of firefighter exposed to high heat source have not been studied yet. Thermal resistance is the best representative parameter of thermal comfort. In this study a new method of testing of thermal resistance of special clothing exposed to high radiation heat source was designed. This method simulates human body wearing single or multi-layered garment which is exposed to radiative heat. Setup of this method enables measuring of radiative heat flow in time without effect of convection. The new testing method is verified on chosen group of textiles for firefighters.

Keywords: protective clothing, radiative heat, thermal comfort of firefighters, thermal resistance of special garments

Procedia PDF Downloads 355
211 Determination of Thermal Conductivity of Plaster Tow Material and Kapok Plaster by Numerical Method: Influence of the Heat Exchange Coefficient in Transitional Regime

Authors: Traore Papa Touty

Abstract:

This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching a steady state when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value.

Keywords: thermal conductivity, numerical method, heat exchange coefficient, transitional regime

Procedia PDF Downloads 193
210 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards

Authors: José M. Carmona, Diana Puigserver, Jofre Herrero

Abstract:

Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.

Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard

Procedia PDF Downloads 130