Search results for: carbon black mixture effect
18447 Suitability of Black Box Approaches for the Reliability Assessment of Component-Based Software
Authors: Anjushi Verma, Tirthankar Gayen
Abstract:
Although, reliability is an important attribute of quality, especially for mission critical systems, yet, there does not exist any versatile model even today for the reliability assessment of component-based software. The existing Black Box models are found to make various assumptions which may not always be realistic and may be quite contrary to the actual behaviour of software. They focus on observing the manner in which the system behaves without considering the structure of the system, the components composing the system, their interconnections, dependencies, usage frequencies, etc.As a result, the entropy (uncertainty) in assessment using these models is much high.Though, there are some models based on operation profile yet sometimes it becomes extremely difficult to obtain the exact operation profile concerned with a given operation. This paper discusses the drawbacks, deficiencies and limitations of Black Box approaches from the perspective of various authors and finally proposes a conceptual model for the reliability assessment of software.Keywords: black box, faults, failure, software reliability
Procedia PDF Downloads 44318446 Comparison of Aflatoxin B1 Levels in Iranian and Indian Spices by ELISA Method
Authors: Amir Sasan Mozaffari Nejad
Abstract:
This study was carried out to detect the presence of aflatoxin B1 (AFB1) in 36 samples of spices from Iran and India that was included of chilli powder (n=12), black pepper powder (n=12) and whole black pepper (n=12). Enzyme-linked immunosorbent assay (ELISA) method was used for analysing the samples. Aflatoxin B1 was found in all the spices samples, the concentration of AFB1 in Iranian samples was ranged from 63.16 to 626.81 ng/kg and in Indian samples was ranged from 31.15 to 245.94 ng/kg. The mean of AFB1 concentration in the chilli powder was significantly higher (P < 0.05) than the whole and powdered black pepper. However, none of the samples exceeded the maximum prescribed limit i.e. 5 µg/kg of European Union regulations for aflatoxin B1. The occurrence of AFB1 in spices samples could be a potential hazard for public health.Keywords: Aflatoxin B1, chilli, black pepper, ELISA, Iran, India
Procedia PDF Downloads 44118445 Gloria Naylor's Linden Hills: A Fine Description of Burdens and Misguided Notions of the Middle Black Community
Authors: Kalluru Maheswaramma, Putta Padma
Abstract:
This study makes an attempt to demonstrate the wondrous world of the upwardly middle black community in Gloria Naylor’s Linden Hills. Gloria Naylor’s first novel The Women of Brewster Place is about the working class and Linden Hills about middle-class Black America. Naylor believes their serenity that is lost in the middle or working class black people as they move into the upper patriarchal society. Naylor challenges the different forms of superiority, homophobia, and chauvinism, interracial bias, and the like, which plague a community so significantly trying to be acceptable in the larger white community. In an ironic twist, Naylor creates characters that recognize their desire for a solid black community but who in reality ignore blackness and negate any emergent sign of its development. Linden Hills is an expose of the wealthy and spiritually dissolute upper class. Linden Hills is an examination of an upper-middle-class African American community in which women are largely exploited or invisible and in which men have, in the course of upward mobility, sacrificed their racial identity and their essence. Linden Hills is a social world, which includes firm stratification, false values, and an immobilizing impact on its residents. Touching a brief note upon the origin and development of African American Literature as well a note on the chosen writer and her works, the paper proceeds to depict the middle-class black community of Linden Hills.Keywords: gloria naylor, linden hills, African American community, the middle black community
Procedia PDF Downloads 56418444 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories
Procedia PDF Downloads 33918443 Carbon Capture: Growth and Development of Membranes in Gas Sequestration
Authors: Sreevalli Bokka
Abstract:
Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.Keywords: membranes, filtration, separations, polymers, carbon capture
Procedia PDF Downloads 6918442 Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture
Authors: Nneka Nkechi Uchegbu, Temitope Omolayo Fasuan
Abstract:
This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications.Keywords: V. amygdalina leaf, bio-compounds, oil-aqueous mixture, amino acids
Procedia PDF Downloads 14618441 Breast Cancer Risk Factors: A Big Data Analysis of Black and White Women in the USA
Authors: Tejasvi Parupudi, Mochen Li, Lakshya Mittal, Ignacio G. Camarillo, Raji Sundararajan
Abstract:
With breast cancer becoming a global pandemic, it is very important to assess a woman’s risk profile accurately in a timely manner. Providing an estimate of the risk of developing breast cancer to a woman gives her an opportunity to consider options to decrease this risk. Women at low risk may be suggested yearly screenings whereas women with a high risk of developing breast cancer would be candidates for aggressive surveillance. Fortunately, there is a set of risk factors that are used to predict the probability of a woman being diagnosed with breast cancer in the future. Studying risk factors and understanding how they correlate to cancer is important for early diagnosis, prevention and reducing mortality rates. The effect of crucial risk factors among black and white women was compared in this study. The various risk factors analyzed include breast density, age, cancer in a first-degree relative, menopausal status, body mass index (BMI) and prior breast cancer diagnosis, etc. Breast density, age at first full-term birth and BMI were utilized in this study as important risk factors for the comparison of incidence rates between women of black and white races in the USA. Understanding the differences could lead to the development of solutions to reduce disparity in mortality rates among black women by improving overall access to care.Keywords: big data, breast cancer, risk factors, incidence rates, mortality, race
Procedia PDF Downloads 27518440 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides
Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen
Abstract:
CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide
Procedia PDF Downloads 29618439 Influence of Shear Deformation on Carbon Onions Stability under High Pressure
Authors: D. P. Evdokimov, A. N. Kirichenko, V. D. Blank, V. N. Denisov, B. A. Kulnitskiy
Abstract:
In this study we investigated the stability of polyhedral carbon onions under influence of shear deformation and high pressures above 43 GPa by means of by transmission electron microscopy (TEM) and Raman spectroscopy (RS). It was found that at pressures up to 29 GPa and shear deformations of 40 degrees the onions are stable. At shear deformation applying at pressures above 30 GPa carbon onions collapsed with formation of amorphous carbon. At pressures above 43 GPa diamond-like carbon (DLC) was obtained.Keywords: carbon onions, Raman spectroscopy, transmission electron spectroscopy
Procedia PDF Downloads 44018438 Microstructure Analysis of Biopolymer Mixture (Chia-Gelatin) by Laser Confocal Microscopy
Authors: Emmanuel Flores Huicochea, Guadalupe Borja Mendiola, Jacqueline Flores Lopez, Rodolfo Rendon Villalobos
Abstract:
The usual procedure to investigate the properties of biodegradable films has been to prepare the film, measure the mechanical or transport properties and then decide whether the mixture has better properties than the individual components, instead of investigating whether the mixture has biopolymer-biopolymer interaction, then prepare the film and finally measure the properties of the film. The work investigates the presence of interaction biopolymer-biopolymer in a mixture of chia biopolymer and gelatin using Laser Confocal Microscopy (LCM). Previously, the chia biopolymer was obtained from chia seed. CML analysis of mixtures of chia biopolymer-gelatin without Na⁺ ions exhibited aggregates of different size, in the range of 100-400 μm, of defined color, for the two colors, but no mixing of color was observed. The increased of gelatin in the mixture decreases the size and number of aggregates. The tridimensional microstructure reveled that there are two layers of biopolymers, chia and gelatin well defined. The mixture chia biopolymer-gelatin with 10 mM Na⁺ and with a ratio 75:25 (chia-gelatin) showed lower aggregated size than others mixture with and without ions. This result could be explained because the chia biopolymer is a polyelectrolyte and the added sodium ions reduce the molecular rigidity by neutralizing the negative charges that the chia biopolymer possesses and therefore a better biopolymer-biopolymer interaction is allowed between the biopolymer of chia and gelatin.Keywords: biopolymer-biopolymer interaction, confocal laser microscopy, CLM, microstructure, mixture chia-gelatin
Procedia PDF Downloads 20818437 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin
Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski
Abstract:
An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.Keywords: carbon fiber reinforced polymer, epoxy, multi-walled carbon nanotube, DMA, glass transition temperature
Procedia PDF Downloads 34318436 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture
Authors: Chul Ho Han, Kyoung Hoon Kim
Abstract:
This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.Keywords: entropy, exergy, ammonia-water mixture, heat exchanger
Procedia PDF Downloads 39818435 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers
Authors: Shota Nagata, Kazuya Okubo, Toru Fujii
Abstract:
The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism
Procedia PDF Downloads 44518434 Generalized Up-downlink Transmission using Black-White Hole Entanglement Generated by Two-level System Circuit
Authors: Muhammad Arif Jalil, Xaythavay Luangvilay, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin
Abstract:
Black and white holes form the entangled pair⟨BH│WH⟩, where a white hole occurs when the particle moves at the same speed as light. The entangled black-white hole pair is at the center with the radian between the gap. When the speed of particle motion is slower than light, the black hole is gravitational (positive gravity), where the white hole is smaller than the black hole. On the downstream side, the entangled pair appears to have a black hole outside the gap increases until the white holes disappear, which is the emptiness paradox. On the upstream side, when moving faster than light, white holes form times tunnels, with black holes becoming smaller. It will continue to move faster and further when the black hole disappears and becomes a wormhole (Singularity) that is only a white hole in emptiness (Emptiness). This research studies use of black and white holes generated by a two-level circuit for communication transmission carriers, in which high ability and capacity of data transmission can be obtained. The black and white hole pair can be generated by the two-level system circuit when the speech of a particle on the circuit is equal to the speed of light. The black hole forms when the particle speed has increased from slower to equal to the light speed, while the white hole is established when the particle comes down faster than light. They are bound by the entangled pair, signal and idler, ⟨Signal│Idler⟩, and the virtual ones for the white hole, which has an angular displacement of half of π radian. A two-level system is made from an electronic circuit to create black and white holes bound by the entangled bits that are immune or cloning-free from thieves. Start by creating a wave-particle behavior when its speed is equal to light black hole is in the middle of the entangled pair, which is the two bit gate. The required information can be input into the system and wrapped by the black hole carrier. A timeline (Tunnel) occurs when the wave-particle speed is faster than light, from which the entangle pair is collapsed. The transmitted information is safely in the time tunnel. The required time and space can be modulated via the input for the downlink operation. The downlink is established when the particle speed is given by a frequency(energy) form is down and entered into the entangled gap, where this time the white hole is established. The information with the required destination is wrapped by the white hole and retrieved by the clients at the destination. The black and white holes are disappeared, and the information can be recovered and used.Keywords: cloning free, time machine, teleportation, two-level system
Procedia PDF Downloads 7418433 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: high carbon steel, austenite stability, atomic force microscopy, corrosion
Procedia PDF Downloads 21018432 The Development Practice and SystemConstruction of Low- Carbon City in China
Authors: Xu Xiao China, Xu Lei China
Abstract:
After the 1990s, the concept of urban sustainable development has been increasing attention in urban planning and urban design. High carbon city, not a sustainable city construction model, has become an important problem which restricts the sustainable development of the city. Therefore, low-carbon city construction is the urgent need to solve the problem, and China is one of the core areas of low-carbon city construction in the world. The research work of low-carbon cities were participated by the Chinese government and academic institutes on theory and practice since 2007, and nowadays it comes to a practice stage with six low-carbon pilot provinces and 36 low-carbon pilot cities identified. To achieve the low-carbon target, developing low-carbon energy, adopting non-pollution technique, constructing green buildings and adopting ecolife-style are suggest by the government. Meanwhile, besides a new standard system and a new eco-environmental status evaluation method, the government also established the Chinese urban development institute including the Low-Carbon City Group. Finally, we want to transform the modern industrial civilization into an ecological civilization and realize sustainable urban development.Keywords: low-carbon city, China, development practice, system construction, urban sustainability
Procedia PDF Downloads 52718431 Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2
Authors: Yeidy Sorani Montenegro Camacho, Samir Bensaid, Nunzio Russo, Debora Fino
Abstract:
LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C.Keywords: soot gasification, nanostructured catalyst, reducing environment, syngas
Procedia PDF Downloads 26118430 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
Authors: S. Wagner, C. Boley, Y. Forouzandeh
Abstract:
When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.Keywords: acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon
Procedia PDF Downloads 14618429 [Keynote Talk]: Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture
Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little
Abstract:
Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.Keywords: by-products, inhibitory effect, mixture, photocatalytic oxidation
Procedia PDF Downloads 49918428 Shear Strength Characteristics of Sand Mixed with Particulate Rubber
Authors: Firas Daghistani, Hossam Abuel Naga
Abstract:
Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.Keywords: shear strength, direct shear, sand-rubber mixture, waste material, granular material
Procedia PDF Downloads 13218427 Ammonia and Biogenic Amine Production of Fish Spoilage Bacteria: Affected by Olive Leaf, Olive Cake and Black Water
Authors: E. Kuley, M. Durmuş, E. Balikci, G. Ozyurt, Y. Uçar, F. Kuley, F. Ozogul, Y. Ozogul
Abstract:
Ammonia and biogenic amine production of fish spoilage bacteria in sardine infusion decarboxylase broth and antimicrobial effect of olive by products (olive leaf extract:OL, olive cake: OC and black water:BW) was monitored using HPLC method. Fish spoilage bacteria produced all biogenic amine tested, mainly histamine and serotonin. Ammonia was accumulated more than 13.60 mg/L. Histamine production was in range 37.50 mg/L by Ser. liquefaciens and 86.71 mg/L by Ent. cloacae. The highest putrescine and cadaverine production was observed by Ent. cloacae (17.80 vs. 17.69 mg/L). The presence of OL, OC and BW in the broth significantly affected biogenic amine accumulation by bacteria. The antibacterial effect of olive by products depended on bacterial strains. OL and OC resulted in significant inhibition effect on HIS accumulation by bacteria apart from Ser. liquefaciens and Prot. mirabilis. The study result revealed that usefulness of OL and OC to prevent the accumulation of this amine which may affect human health.Keywords: Antimicrobials, biogenic amine, fish spoilage bacteria, olive-by products
Procedia PDF Downloads 50218426 Running Head: Psychological Inflexibility and Distress
Authors: Steven M. Sanders, April T. Berry, David W. Hollingsworth
Abstract:
Previous research has shown that veterans have higher rates of mental health concerns compared to non-veteran populations. A potential risk factor for the development of mental health concerns (i.e., depression & anxiety), particularly in Black veterans, is psychological inflexibility. Psychological inflexibility, a component of Acceptance & Commitment Therapy (ACT), is a process by which behavior is expressed in ways that attempt to control emotional and psychological reactions to uncomfortable stimuli and situations rather than by direct contingencies or personal values. The present study explored the relationship between psychological inflexibility, symptoms of depression, and symptoms of anxiety in a sample of 131 Black veterans. Results demonstrated that Black veterans who endorsed psychological inflexibility also endorsed higher levels of both depression and anxiety symptomology. These findings indicate the deleterious consequences of experiencing psychological inflexibility, which could be treated through ACT.Keywords: psychological flexibility, veteran, black, psychological distress
Procedia PDF Downloads 13018425 Effect of a Mixture of Phenol, O-Cresol, P-Cresol, and M-Cresol on the Nitrifying Process in a Sequencing Batch Reactor
Authors: Adriana Sosa, Susana Rincon, Chérif Ben, Diana Cabañas, Juan E. Ruiz, Alejandro Zepeda
Abstract:
The complex chemical composition (mixtures of ammonium and recalcitrant compounds) of the effluents from the chemical, pharmaceutical and petrochemical industries represents a challenge in their biological treatment. This treatment involves nitrification process that can suffer an inhibition due to the presence of aromatic compounds giving as a result the decrease of the process efficiency. The inhibitory effects on nitrification in the presence of aromatic compounds have already been studied; however a few studies have considered the presence of phenolic compounds in the form of mixtures, which is the form that they are present in real context. For this reason, we realized a kinetic study on the nitrifying process in the presence of different concentrations of a mixture of phenol, o-cresol, m-cresol and p-cresol (0 - 320 mg C/L) in a sequencing batch reactor (SBR). Firstly, the nitrifying process was evaluated in absence of the phenolic mixture (control 1) in a SBR with 2 L working volume and 176 mg/L of nitrogen of microbial protein. Total oxidation of initial ammonium (efficiency; ENH4+ of 100 %) to nitrate (nitrifying yield; YNO3- of 0.95) were obtained with specific rates of ammonium consumption (qN-NH4+) and nitrate production (qN-NO3-) (of 1.11 ± 0.04 h-1 and 0.67 h-1 ± 0.11 respectively. During the phase of acclimation with 40 mg C/L of the phenolic mixture, an inhibitory effect on the nitrifying process was observed, provoking a decrease in ENH4+ and YNO3- (11 and 54 % respectively) as well as in the specific rates (89 y 46 % respectively), being the ammonia oxidizing bacteria (BAO) the most affected. However, in the next cycles without the phenolic mixture (control 2), the nitrifying consortium was able to recover its nitrifying capacity (ENH4+ = 100% and YNO3-=0.98). Afterwards the SBR was fed with 10 mg C/L of the phenolic mixture, obtaining and ENH4+ of 100%, YNO3- and qN-NH4+ 0.62 ± 0.006 and 0.13 ± 0.004 respectively, while the qN-NO3- was 0.49 ± 0.007. Moreover, with the increase of the phenolic concentrations (10-160 mg C/L) and the number of cycles the nitrifying consortium was able to oxidize the ammonia with ENH4+ of 100 % and YNO3- close to 1. However a decrease in the values of the nitrification specific rates and increase in the oxidation in phenolic compounds (70 to 94%) were observed. Finally, in the presence of 320 mg C/L, the nitrifying consortium was able to simultaneously oxidize the ammonia (ENH4+= 100%) and the phenolic mixture (p-cresol>phenol>m-cresol>o-cresol) being the o-cresol the most recalcitrant compound. In all the experiments the use of a SBR allowed a respiratory adaptation of the consortium to oxidize the phenolic mixture achieving greater adaptation of the nitrite-oxidizing bacteria (NOB) than in the ammonia-oxidizing bacteria (AOB).Keywords: cresol, inhibition, nitrification, phenol, sequencing batch reactor
Procedia PDF Downloads 36118424 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber
Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo
Abstract:
In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect
Procedia PDF Downloads 17718423 Algorithmic Generation of Carbon Nanochimneys
Authors: Sorin Muraru
Abstract:
Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures
Procedia PDF Downloads 17018422 Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation
Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives
Abstract:
This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.Keywords: asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation
Procedia PDF Downloads 28518421 Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate
Authors: S. Boudali, A. M. Soliman, B. Abdulsalam, K. Ayed, D. E. Kerdal, S. Poncet
Abstract:
This study investigates the potential of using crushed concrete as aggregates to produce green and sustainable concrete. Crushed concrete was sieved to powder fine recycled aggregate (PFRA) less than 80 µm and coarse recycled aggregates (CRA). Physical, mechanical, and microstructural properties for PFRA and CRA were evaluated. The effect of the additional rates of PFRA and CRA on strength development of recycled aggregate concrete (RAC) was investigated. Additionally, the characteristics of interfacial transition zone (ITZ) between cement paste and recycled aggregate were also examined. Results show that concrete mixtures made with 100% of CRA and 40% PFRA exhibited similar performance to that of the control mixture prepared with 100% natural aggregate (NA) and 40% natural pozzolan (NP). Moreover, concrete mixture incorporating recycled aggregate exhibited a slightly higher later compressive strength than that of the concrete with NA. This was confirmed by the very dense microstructure for concrete mixture incorporating recycled concrete aggregates compared to that of conventional concrete mixture.Keywords: compressive strength, recycled concrete aggregates, microstructure, interfacial transition zone, powder fine recycled aggregate
Procedia PDF Downloads 34118420 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane
Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi
Abstract:
We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.Keywords: dyes, methylene blue, membrane, activated carbon
Procedia PDF Downloads 8118419 Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner
Authors: Prince Igor Itoua, Daquan Sun, Shihui Shen
Abstract:
This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test(IDEAL-CT), and Ideal shear rutting test(IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Fur-thermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance.Keywords: waste toner, waste toner modified asphalt, asphalt mixture properties, IDEAL-RT test, IDEAL-CT test
Procedia PDF Downloads 8718418 A Sustainable Pt/BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ Catalyst for Dry Reforming of Methane-Derived from Recycled Primary Pt
Authors: Alessio Varotto, Lorenzo Freschi, Umberto Pasqual Laverdura, Anastasia Moschovi, Davide Pumiglia, Iakovos Yakoumis, Marta Feroci, Maria Luisa Grilli
Abstract:
Dry reforming of Methane (DRM) is considered one of the most valuable technologies for green-house gas valorization thanks to the fact that through this reaction, it is possible to obtain syngas, a mixture of H₂ and CO in an H₂/CO ratio suitable for utilization in the Fischer-Tropsch process of high value-added chemicals and fuels. Challenges of the DRM process are the reduction of costs due to the high temperature of the process and the high cost of precious metals of the catalyst, the metal particles sintering, and carbon deposition on the catalysts’ surface. The aim of this study is to demonstrate the feasibility of the synthesis of catalysts using a leachate solution containing Pt coming directly from the recovery of spent diesel oxidation catalysts (DOCs) without further purification. An unusual perovskite support for DRM, the BaCe₁₋ₓ₋ᵧZrₓGdᵧO₃ (BCZG) perovskite, has been chosen as the catalyst support because of its high thermal stability and capability to produce oxygen vacancies, which suppress the carbon deposition and enhance the catalytic activity of the catalyst. BCZG perovskite has been synthesized by a sol-gel modified Pechini process and calcinated in air at 1100 °C. BCZG supports have been impregnated with a Pt-containing leachate solution of DOC, obtained by a mild hydrometallurgical recovery process, as reported elsewhere by some of the authors of this manuscript. For comparison reasons, a synthetic solution obtained by digesting commercial Pt-black powder in aqua regia was used for BCZG support impregnation. Pt nominal content was 2% in both BCZG-based catalysts formed by real and synthetic solutions. The structure and morphology of catalysts were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Thermogravimetric Analysis (TGA) was used to study the thermal stability of the catalyst’s samples. Brunauer-Emmett-Teller (BET) analysis provided a high surface area of the catalysts. H₂-TPR (Temperature Programmed Reduction) analysis was used to study the consumption of hydrogen for reducibility, and it was associated with H₂-TPD characterization to study the dispersion of Pt on the surface of the support and calculate the number of active sites used by the precious metal. Dry reforming of methane (DRM) reaction, carried out in a fixed bed reactor, showed a high conversion efficiency of CO₂ and CH4. At 850°C, CO₂ and CH₄ conversion were close to 100% for the catalyst obtained with the aqua regia-based solution of commercial Pt-black, and ~70% (for CH₄) and ~80 % (for CO₂) in the case of real HCl-based leachate solution. H₂/CO ratios were ~0.9 and ~0.70 in the first and latter cases, respectively. As far as we know, this is the first pioneering work in which a BCGZ catalyst and a real Pt-containing leachate solution were successfully employed for DRM reaction.Keywords: dry reforming of methane, perovskite, PGM, recycled Pt, syngas
Procedia PDF Downloads 37