Search results for: In vitro cytotoxicity
1417 In vitro Larvicidal Activity of Varying Concentrations of Madre De Cacao (Gliricidia sepium) Concentrated Crude Ethanolic Extract against Larvae of Horn Fly (Haematobia irritans)
Authors: Antonio B.Tangayan Jr., Hershey P. Mondejar, Pet Roey Pascual, Zeam Voltaire E. Amper
Abstract:
A study on in vitro larvicidal acitivity of different levels of Madre de Cacao (Gliricidia sepium) concentrated crude ethanolic extract (CCEE) against horn fly larvae (Haematobia irritans) was conducted. The air-dried leaves of Gliricidia sepium were infused in a 1:3 ratio (w/v) using ethanol as solvent and concentrated in a rotary evaporator (60°C). A total of 120 larvae of Haematobia irritans were exposed in various concentration: 200, 400, 800 and 1000 ppm. Based on the result after 5 hours of exposure, CCE G. sepium extract at 200 ppm showed less effect with 30% mortality compared to 400 ppm, 800 ppm and 1000 ppm with 70%, 83%, and 100% mortality, respectively. Findings also revealed that CCE of G. sepium extract at 1000 ppm, 800 ppm, and commercial larvicide were comparable in causing mortality of H. irritans larvae from the first hour up to the fifth hours of exposure. However, on the fifth hour, 400 ppm was also found to be effective. This suggests that the higher the concentration of CCE G. sepium extract and the longer the time of exposure, the higher is the percentage mortality of the larvae. Thus, CCE G. sepium extract can be used as an alternative for commercial larvicide.Keywords: horn fly, in vitro, larvicidal, Madre de Cacao
Procedia PDF Downloads 2841416 Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties
Authors: Tauseef Ahmad, Muhammad Ishaq, Mathew Eapen, Ahyoung Park, Sam Karpiniec, Vanni Caruso, Rajaraman Eri
Abstract:
Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication.Keywords: fucoidan, PBMCs, THP-1, TNF-α, IL-1β, IL-6, inflammation
Procedia PDF Downloads 591415 Metabolome-based Profiling of African Baobab Fruit (Adansonia Digitata L.) Using a Multiplex Approach of MS and NMR Techniques in Relation to Its Biological Activity
Authors: Marwa T. Badawy, Alaa F. Bakr, Nesrine Hegazi, Mohamed A. Farag, Ahmed Abdellatif
Abstract:
Diabetes Mellitus (DM) is a chronic disease affecting a large population worldwide. Africa is rich in native medicinal plants with myriad health benefits, though less explored towards the development of specific drug therapy as in diabetes. This study aims to determine the in vivo antidiabetic potential of the well-reported and traditionally used fruits of Baobab (Adansonia digitata L.) using STZ induced diabetic model. The in-vitro cytotoxic and antioxidant properties were examined using MTT assay on L-929 fibroblast cells and DPPH antioxidant assays, respectively. The extract showed minimal cytotoxicity with an IC50 value of 105.7 µg/mL. Histopathological and immunohistochemical investigations showed the hepatoprotective and the renoprotective effects of A. digitata fruits’ extract, implying its protective effects against diabetes complications. These findings were further supported by biochemical assays, which showed that i.p., injection of a low dose (150 mg/kg) of A. digitata twice a week lowered the fasting blood glucose levels, lipid profile, hepatic and renal markers. For a comprehensive overview of extract metabolites composition, ultrahigh performance (UHPLC) analysis coupled to high-resolution tandem mass spectrometry (HRMS/MS) in synchronization with molecular networks led to the annotation of 77 metabolites, among which 50% are reported for the first time in A. digitata fruits.Keywords: adansonia digital, diabetes mellitus, metabolomics, streptozotocin, Sprague, dawley rats
Procedia PDF Downloads 1641414 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 821413 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation
Authors: Deepanjali Gurav, Kun Qian
Abstract:
In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics
Procedia PDF Downloads 1381412 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro
Authors: Prativa Das, Lay Poh Tan
Abstract:
Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis
Procedia PDF Downloads 1261411 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles
Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav
Abstract:
The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid
Procedia PDF Downloads 4931410 Chemical Study and Cytotoxic Activity of Extracts from Erythroxylum Genus against HeLa Cells
Authors: Richele P. Severino, Maria M. F. Alchaar, Lorena R. F. De Sousa, Patrik S. Vital, Ana G. Silva, Rosy I. M. A. Ribeiro
Abstract:
Recognized as a global biodiversity hotspot, the Cerrado (Brazil) presents an extreme abundance of endemic species and it is considered to be one of the biologically richest tropical savanna regions in the world. Erythroxylum genus is found in Cerrado and chemically is characterized by the presence of tropane alkaloids, among them cocaine, a natural alkaloid produced by Erythroxylum coca Lam., which was used as a local anesthetic in small surgeries. However, cocaine gained notoriety due to its psychoactive activity in the Central Nervous System (CNS), becoming one of the major problems of public health today. Some species of Erythroxylum are referred to in the literature as having pharmacological potential, which provide alkaloids, terpenoids, and flavonoids. E. vacciniifolium Mart., commonly known as 'catuaba', is used as a central nervous system stimulant and has aphrodisiac properties and E. pelleterianum A. St.-Hil. in the treatment of stomach pains. Already E. myrsinites Mart. and E. suberosum A. St.-Hil. are used in the tannery industry. Species of Erythroxylum are also used in folk medicine for various diseases, against diabetes, antiviral, fungicidal, cytotoxicity, among others. The Cerrado is recognized as the richer savannah in the world in biodiversity but little explored from the chemical view. In our on-going study of the chemistry of Erythroxylum genus, we have investigated four specimens collected in central Cerrado of Brazil: E. campestre (EC), E. deciduum (ED), E. suberosum (ES) and E. tortuosum (ET). The cytotoxic activity of extracts was evaluated using HeLa cells, in vitro assays. The chemical investigation was performed preparing the extracts using n-hexane (H), dichloromethane (D), ethyl acetate (E) and methanol (M). The cells were treated with increasing concentrations of extracts (50, 75 and 100 μg/mL) diluted in DMSO (1%) and DMEM (0.5% FBS and 1% P/S). The IC₅₀ values were determined measured spectrophotometrically at 570 nm, after incubation of HeLa cell line for 48 hours using the MTT (SIGMA M5655), and calculated by nonlinear regression analysis using GraphPad Prism software. All the assays were done in triplicate and repeated at least two times. The cytotoxic assays showed some promising results with IC₅₀ values less than 100 μg/mL (ETD = 38.5 μg/mL; ETM = 92.3 μg/mL; ESM = 67.8 μg/mL; ECD = 24.0 μg/mL; ECM = 32.9; EDA = 44.2 μg/mL). The chemical profile study of ethyl acetate (E) and methanolic (M) extracts of E. tortuosum leaves was performed by LC-MS, and the structures of the compounds were determined by analysis of ¹H, HSQC and HMBC spectra, and confirmed by comparison with the literature data. The investigation led to six substances: α-amyrin, β-amyrin, campesterol, stigmastan-3,5-diene, β-sitosterol and 7,4’-di-O-methylquercetin-3-O-β-rutinoside, with flavonoid the major compound of extracts. By alkaline extraction of the methanolic extract, it was possible to identify three alkaloids: tropacocaine, cocaine and 6-methoxy-8-methyl-8-azabicyclo[3.2.1]octan-3-ol. The results obtained are important for the chemical knowledge of the Cerrado biodiversity and brought a contribution to the chemistry of Erythroxylum genus.Keywords: cytotoxicity, Erythroxylum, chemical profile, secondary metabolites
Procedia PDF Downloads 1441409 In vitro Culture of Stem Node Segments of Maerua crassifolia
Authors: Abobaker Abrahem M. Saad, Asma Abudasalam
Abstract:
The stem node segments were cultured on Murashige and Skoog (MS) medium. In the case of using MS+ Zeatin (1 mg/l), small shoot buds were formed directly in 70% of explants after 15 days, their length range between 0.1 to 0.3 cm after two weeks and reached 0.3 cm in length and three shoots in numbers after 4 weeks. When those small shoots were sub cultured on the same medium, they increased in length, number and reached 0.4 cm with 4 shoots, 0.4 cm with 5 shoots after six, eight and ten weeks respectively. In the case of using MS free hormones, MS+IAA (0.2mg/l) +BA (0.5mg/l), MS + kin(0.5mg/l), MS + kin (3mg/l) and MS +NAA (3mg/l) +BA (1mg/l), no sign of responses were noticed and only change in color in some cases. Different types of parenchyma cells and many layers of thick wall sclerenchyma cells were observed on MS+BA (1mg/l).Keywords: Maerua, stem node, shoots, buds, In vitro
Procedia PDF Downloads 3121408 Chemical Composition and Biological Investigation of Halpophyllum tuberculatum A. Juss (Rutaceae) Essential Oils Growing in Libya
Authors: O. M. M. Sabry, Abeer M. El Sayed
Abstract:
The essential oils from the aerial parts and flowers of Haplophyllum tuberculatum (Forsskal) Adr. Juss (Rutaceae) growing in Libya were obtained separately by hydro-distillation using a Clevenger-type apparatus. The essential oils yield were (0.4, 1.5w/w%) respectively based on the dry weight of the plant. The oils were analyzed by GC-MS. Twenty four constituents, amounting to 96.6%, were identified in the oil of the aerial parts. The predominant compounds were among the non oxygenated terpenoids (82.4%) as monoterpene hydrocarbons, represented by sabinen (26.4 %), δ-terpinen (26 %), β-phellandrene (10.4%) and 3-carene (3.86%). Zingiberine (0.4%) and β-sesquiphellandrene (0.12%) were the major sesquiterpene hydrocarbons identified. Oxygenated monoterpenes were represented by eucalyptol (5.5%) and piperitone (5.55%). Twenty six constituents, equivalent to 99.5%, were identified in the oil of the flowers. The dominance of monoterpene hydrocarbons in the flowers oil can be attributed to the high percentage of γ-terpinen (38.44%), β-phellandrene (10.0%), α- phellandrene (2.33%), 3,4-dimethyl-1,5-cyclooctadiene (6.67%), β-myrecene (6.04%), 3-carene (5.43%) and α-pinene (1.3%).While the oxygenated monoterpenes can be contributed to the trans-piperitol (4.67%) and piperitone (2.07%). Sesquiterpene hydrocarbons were not identified in the oil of the flower of H. tuberculatum. Variation in constitution between oils of Libyan H. tuberculatum and that obtained from other countries can be due to both environmental and genetic factors. The essential oils have demonstrated variable antimicrobial activities against certain micro-organisms. Also have revealed marked in vitro cytotoxicity against lung (H1299), liver (HEPG2) carcinoma cell line and variably effective as anti-inflammatory and antioxidant.Keywords: Halpophyllum tuberculatum, rutaceae, essential oil, antimicrobial, anti-inflammatory, antitumor, antioxidant, Libya
Procedia PDF Downloads 4781407 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid
Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug
Abstract:
In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability
Procedia PDF Downloads 1491406 In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa
Authors: Marek Halenár, Eva Tvrdá, Simona Baldovská, Ľubomír Ondruška, Peter Massányi, Adriana Kolesárová
Abstract:
This study aimed to assess the in vitro effects of different concentrations of the Viscum album extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low Viscum concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the Viscum extract is capable of delaying the damage inflicted to the spermatozoon by the in vitro environment.Keywords: CASA, mistletoe, mitochondrial activity, motility, reactive oxygen species, rabbits, spermatozoa, Viscum album
Procedia PDF Downloads 3941405 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells
Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska
Abstract:
Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells
Procedia PDF Downloads 4821404 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic
Authors: Mehieddine Bouatrous
Abstract:
Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability
Procedia PDF Downloads 771403 Ethnopharmacological Analysis of Fermented Herbal Concoctions
Authors: Ishmael Ntlhamu
Abstract:
In Limpopo Province, the use of herbal concoctions is becoming very popular. These concoctions are claimed to be capable of treating ulcers, diabetes, certain STDs, blood cleansing, and many more types of diseases. The aim of this study was to evaluate the phytochemical composition, evaluate the pharmacological effects and consumption safety in herbal concoctions to treat various kinds of ailments in Limpopo. The concoctions were extracted with 80% acetone. Microorganisms in the concoctions were identified using the Vitek 2 compact system. Qualitative phytochemical analysis was determined using standard chemical tests and thin layer chromatography (TLC). Total polyphenol content was quantified. Antioxidant activity was quantified using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and ferric reducing power. Antimicrobial activities were determined using a broth micro-dilution assay and bioautography. Cell viability assay was used to determine the cytotoxicity. Results showed that concoctions had antioxidant activity. Presence of different phytoconstituents was observed. Isolated microorganisms were identified as Burkholderia pseudomallei, Staphylococcus vitulimus, Enterococcus columbae, Kocuria kristanae, Staphylococcus intermedius, Cryptococcus laurenti. and Burkholderia pseudomallei (highly pathogenic). Therefore, phytochemicals prove that the concoctions can heal as the antimicrobial tests also displayed activity. Moreover, the concoctions did not exhibit cytotoxic effects. However, contaminants raise concerns, not only for consumer safety but also the quality of herbal concoctions available as part of the traditional medicinal practice in Limpopo.Keywords: antimicrobials, concoctions, cytotoxicity, phytochemicals
Procedia PDF Downloads 1381402 In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains
Authors: Wanbao Chen, Qianqian Yao, Zhenming Zhou
Abstract:
Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains.Keywords: cereal grains, gas production, in vitro rumen fermentation, steam-flaking processing
Procedia PDF Downloads 2701401 Antibacterial Activity and Cytotoxicity of Silver Nanoparticles Synthesized by Moringa oleifera Extract as Reducing Agent
Authors: Temsiri Suwan, Penpicha Wanachantararak, Sakornrat Khongkhunthian, Siriporn Okonogi
Abstract:
In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis approach using Moringa oleifera aqueous extract (ME) as a reducing agent and silver nitrate as a precursor. The obtained AgNPs were characterized using UV-Vis spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The results from UV-Vis revealed that the maximum absorption of AgNPs was at 430 nm and the EDX spectrum confirmed Ag element. The results from DLS indicated that the amount of ME played an important role in particle size, size distribution, and zeta potential of the obtained AgNPs. The smallest size (62.4 ± 1.8 nm) with narrow distribution (0.18 ± 0.02) of AgNPs was obtained after using 1% w/v of ME. This system gave high negative zeta potential of -36.5 ± 2.8 mV. SEM results indicated that the obtained AgNPs were spherical in shape. Antibacterial activity using dilution method revealed that the minimum inhibitory and minimum bactericidal concentrations of the obtained AgNPs against Streptococcus mutans were 0.025 and 0.1 mg/mL, respectively. Cytotoxicity test of AgNPs on adenocarcinomic human alveolar basal epithelial cells (A549) indicated that the particles impacted against A549 cells. The percentage of cell growth inhibition was 87.5 ± 3.6 % when only 0.1 mg/mL AgNPs was used. These results suggest that ME is the potential reducing agent for green synthesis of AgNPs.Keywords: antibacterial activity, Moringa oleifera extract, reducing agent, silver nanoparticles
Procedia PDF Downloads 1081400 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells
Authors: Fadilah Aleanizy
Abstract:
Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli
Procedia PDF Downloads 4091399 Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis
Authors: Victor Pena Ribeiro, Caroline Arruda, Jennyfer Andrea Aldana Mejia, Jairo Kenupp Bastos
Abstract:
Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis.Keywords: amastigote, brown propolis, cytotoxicity, promastigote
Procedia PDF Downloads 1511398 Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application
Authors: Er-Yuan Chuang
Abstract:
Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies.Keywords: protein based, in vitro study, in vivo study, biomaterials
Procedia PDF Downloads 1891397 Sterilization of Potato Explants for in vitro Propagation
Authors: D. R. Masvodza, G. Coetzer, E. van der Watt
Abstract:
Microorganisms usually have a prolific growth nature and may cause major problems on in-vitro cultures. For in vitro propagation to be successful explants need to be sterile. In order to determine the best sterilization method for potato explants cv. Amerthyst, five sterilization methods were applied separately to 24 shoots. The first sterilization method was the use of 20% sodium hypochlorite with 1 ml Tween 20 for 15 minutes. The second, third and fourth sterilization methods were the immersion of explants in 70% ethanol in a beaker for either 30 seconds, 1 minute or 2 minutes, followed by 1% sodium hypochlorite with 1 ml Tween 20 for 5 minutes. For the control treatment, no chemicals were used. Finally, all the explants were rinsed three times with autoclaved distilled water and trimmed to 1-2 cm. Explants were then cultured on MS medium with 0.01 mg L-1 NAA and 0.1 mg L-1 GA3 and supplemented with 2 mg L-1 D-calcium pentothenate. The trial was laid out as a complete randomized design, and each treatment combination was replicated 24 times. At 7, 14 and 21 days after culture, data on explant color, survival, and presence or absence of contamination was recorded. Best results were obtained when 20% sodium hypochlorite was used with 1 ml Tween 20 for 15 minutes which is sterilization method 1. Method 2 was comparable to method 1 when explants were cultured in glass vessels. Explants in glass vessels were significantly less contaminated than explants in polypropylene vessel. Therefore at times, ideal methods for sterilization should be coupled with ideal culture conditions such as good quality culture vessel, rather than the addition of more stringent sterilants.Keywords: culture containers, explants, sodium hypochlororite, sterilization
Procedia PDF Downloads 3311396 Supplementation of Leucahena leucochepala on Rice Straw Ammoniated Complete Feed on Fiber Digestibility and in vitro Rumen Fermentation Characteristics
Authors: Mardiati Zain, W. S. N. Rusmana, Erpomen, Malik Makmur, Ezi Masdia Putri
Abstract:
Background and Aim: The leaves of the Leucaenaleucocephala tree have potential as a nitrogen source for ruminants. Leucaena leaf meal as protein supplement has been shown to improve the feed quality of ruminants. The effects of different levels of Leucaena leucocephala supplementation as substitute of concentrate on fiber digestibility and in vitro rumen fermentation characteristics were investigated. This research was conducted in vitro. The study used a randomized block design consisting of 3 treatments and 5 replications. The treatments were A. 40% rice straw ammoniated + 60% concentrate, B. 40% rice straw ammoniated + 50% concentrate + 10% Leucaena leuchephala, C. 40% rice straw ammoniated + 40% concentrate + 20% Leucaena leuchephala, Result: The results showed that the addition of Leucaena leucocephala increased the digestibility of Neutral detergent Fiber NDF and Acid Detergent Fiber (ADF) (p < 0.05). In this study, rumen NH3, propionate, amount of escape protein and total Volatyl Fatty Acid (VFA) were found increased significantly at treatment B. No significant difference was observed in acetate and butyrate production. The populations of total protozoa and methane production had significantly decreased (P < .05) in supplemented group. Conclusion: Supplementation of leuchaena leucochepala on completed feed based on ammoniated rice straw in vitro can increase fiber digestibility, VFA production and decreased protozoa pupulataion and methane production. Supplementation of 10% and 20% L. leucochepala were suitable to be used for further studies, therefore in vivo experiment is required to study the effects on animal production.Keywords: digestibility, Leucaena leucocephala, complete feed, rice straw ammoniated
Procedia PDF Downloads 1541395 Bioactivity Evaluation of Cucurbitin Derived Enzymatic Hydrolysates
Authors: Ž. Vaštag, Lj. Popović, S. Popović
Abstract:
After cold pressing of pumpkin oil, the defatted oil cake (PUOC) was utilized as raw material for processing of bio-functional hydrolysates. In this study, the in vitro bioactivity of an alcalase (AH) and a pepsin hydrolysate (PH) prepared from the major pumpkin 12S globulin (cucurbitin) are compared. The hydrolysates were produced at optimum reaction conditions (temperature, pH) for the enzymes, during 60min. The bioactivity testing included antioxidant and angiotensin I converting enzyme inhibitory activity assays. The hydrolysates showed high potential as natural antioxidants and possibly antihypertensive agents in functional food or nutraceuticals. Additionally, preliminary studies have shown that both hydrolysates could exhibit modest α-amylase inhibitory activity, which indicates on their hypoglycemic potential.Keywords: cucurbitin, alcalase, pepsin, protein hydrolysates, in vitro bioactivity
Procedia PDF Downloads 3111394 Comparison of Different in vitro Models of the Blood-Brain Barrier for Study of Toxic Effects of Engineered Nanoparticles
Authors: Samir Dekali, David Crouzier
Abstract:
Due to their new physico-chemical properties engineered nanoparticles (ENPs) are increasingly employed in numerous industrial sectors (such as electronics, textile, aerospace, cosmetics, pharmaceuticals, food industry, etc). These new physico-chemical properties can also represent a threat for the human health. Consumers can notably be exposed involuntarily by different routes such as inhalation, ingestion or through the skin. Several studies recently reported a possible biodistribution of these ENPs on the blood-brain barrier (BBB). Consequently, there is a great need for developing BBB in vitro models representative of the in vivo situation and capable of rapidly and accurately assessing ENPs toxic effects and their potential translocation through this barrier. In this study, several in vitro models established with micro-endothelial brain cell lines of different origins (bEnd.3 mouse cell line or a new human cell line) co-cultivated or not with astrocytic cells (C6 rat or C8-B4 mouse cell lines) on Transwells® were compared using different endpoints: trans-endothelial resistance, permeability of the Lucifer yellow and protein junction labeling. Impact of NIST diesel exhaust particles on BBB cell viability is also discussed.Keywords: nanoparticles, blood-brain barrier, diesel exhaust particles, toxicology
Procedia PDF Downloads 4401393 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations
Authors: Elbadawy A. Kamoun
Abstract:
Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy
Procedia PDF Downloads 2791392 Biomechanics of Ceramic on Ceramic vs. Ceramic on Xlpe Total Hip Arthroplasties During Gait
Authors: Athanasios Triantafyllou, Georgios Papagiannis, Vassilios Nikolaou, Panayiotis J. Papagelopoulos, George C. Babis
Abstract:
In vitro measurements are widely used in order to predict THAs wear rate implementing gait kinematic and kinetic parameters. Clinical tests of materials and designs are crucial to prove the accuracy and validate such measurements. The purpose of this study is to examine the affection of THA gait kinematics and kinetics on wear during gait, the essential functional activity of humans, by comparing in vivo gait data to in vitro results. Our study hypothesis is that both implants will present the same hip joint kinematics and kinetics during gait. 127 unilateral primary cementless total hip arthroplasties were included in the research. Independent t-tests were used to identify a statistically significant difference in kinetic and kinematic data extracted from 3D gait analysis. No statistically significant differences observed at mean peak abduction, flexion and extension moments between the two groups (P.abduction= 0,125, P.flexion= 0,218, P.extension= 0,082). The kinematic measurements show no statistically significant differences too (Prom flexion-extension= 0,687, Prom abduction-adduction= 0,679). THA kinematics and kinetics during gait are important biomechanical parameters directly associated with implants wear. In vitro studies report less wear in CoC than CoXLPE when tested with the same gait cycle kinematic protocol. Our findings confirm that both implants behave identically in terms of kinematics in the clinical environment, thus strengthening in vitro results of CoC advantage. Correlated to all other significant factors that affect THA wear could address in a complete prism the wear on CoC and CoXLPE.Keywords: total hip arthroplasty biomechanics, THA gait analysis, ceramic on ceramic kinematics, ceramic on XLPE kinetics, total hip replacement wear
Procedia PDF Downloads 1541391 Analysis of in Vitro Biocompatibility Studies of Silicate-Based Bioceramic Cements: A Scoping Review
Authors: Olphiara Rodolpheza Alexandre, Carla David, Rafael Guerra Lund, Nadia Ferreira
Abstract:
Due to the increasing demand for biomaterials in the dental field, especially in endodontics, calcium silicate-based cements (CSCs) have gained prominence because of their biocompatibility and tissue regeneration capabilities. Originating from Mineral Trioxide Aggregate (MTA), the first bioceramic in endodontics derived from Portland cement, these materials are becoming increasingly prevalent in the market. For any drug released to the market, pharmacovigilance must ensure the absence of adverse health effects on consumers through rigorous toxicological testing. Although these materials have undergone in vitro and in vivo testing, such tests have typically been conducted over a limited period. Some effects may only become apparent after several years, and these studies are generally carried out on a non-specific population. However, the variety of calcium silicate-based products, including cement and sealers, raises questions about their toxicity, particularly considering potential long-term effects not addressed in existing studies. While the scientific literature includes comparative studies on the toxicity of these materials, the consistency of their conclusions is often controversial. Therefore, this project aims to map the scientific evidence from in vitro biocompatibility studies, including those investigating the toxicity of calcium silicate-based bioceramics.Keywords: toxicity, toxicity test, bioceramics, calcium silicate, genotoxicity
Procedia PDF Downloads 301390 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L
Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli
Abstract:
Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.Keywords: artemisia absinthium, biological activities, essential oil, extraction processes
Procedia PDF Downloads 3411389 In vitro Effects of Amygdalin on the Functional Competence of Rabbit Spermatozoa
Authors: Marek Halenár, Eva Tvrdá, Tomáš Slanina, Ľubomír Ondruška, Eduard Kolesár, Peter Massányi, Adriana Kolesárová
Abstract:
The present in vitro study was designed to reveal whether amygdalin (AMG) is able to cause changes to the motility, viability and mitochondrial activity of rabbit spermatozoa. New Zealand White rabbits (n = 10) aged four months were used in the study. Semen samples were collected from each animal and used for the in vitro incubation. The samples were divided into five equal parts and diluted with saline supplemented with 0, 0.5, 1, 2.5 and 5 mg/mL AMG. At times 0h, 3h and 5h spermatozoa motion parameters were assessed using the SpermVision™ computer-aided sperm analysis (CASA) system, cell viability was examined with the metabolic activity (MTT) assay, and the eosin-nigrosin staining technique was used to evaluate the viability of rabbit spermatozoa. All AMG concentrations exhibited stimulating effects on the spermatozoa activity, as shown by a significant preservation of the motility (P<0.05 with respect to 0.5 mg/mL and 1 mg/mL AMG; Time 5 h) and mitochondrial activity (P< 0.05 in case of 0.5 mg/mL AMG; P< 0.01 in case of 1 mg/mL AMG; P < 0.001 with respect to 2.5 mg/mL and 5 mg/mL AMG; Time 5 h). None of the AMG doses supplemented had any significant impact of the spermatozoa viability. In conclusion, the data revealed that short-term co-incubation of spermatozoa with AMG may result in a higher preservation of the sperm structural integrity and functional activity.Keywords: amygdalin, CASA, mitochondrial activity, motility, rabbits, spermatozoa, viability
Procedia PDF Downloads 3301388 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines
Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi
Abstract:
Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer
Procedia PDF Downloads 348