Search results for: Aurantiamide acetate
167 Development of Paper Based Analytical Devices for Analysis of Iron (III) in Natural Water Samples
Authors: Sakchai Satienperakul, Manoch Thanomwat, Jutiporn Seedasama
Abstract:
A paper based analytical devices (PADs) for the analysis of Fe (III) ion in natural water samples is developed, using reagent from guava leaf extract. The extraction is simply performed in deionized water pH 7, where tannin extract is obtained and used as an alternative natural reagent. The PADs are fabricated by ink-jet printing using alkenyl ketene dimer (AKD) wax. The quantitation of Fe (III) is carried out using reagent from guava leaf extract prepared in acetate buffer at the ratio of 1:1. A color change to gray-purple is observed by naked eye when dropping sample contained Fe (III) ion on PADs channel. The reflective absorption measurement is performed for creating a standard curve. The linear calibration range is observed over the concentration range of 2-10 mg L-1. Detection limited of Fe (III) is observed at 2 mg L-1. In its optimum form, the PADs is stable for up to 30 days under oxygen free conditions. The small dimensions, low volume requirement and alternative natural reagent make the proposed PADs attractive for on-site environmental monitoring and analysis.Keywords: green chemical analysis, guava leaf extract, lab on a chip, paper based analytical device
Procedia PDF Downloads 242166 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms
Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem
Abstract:
The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.Keywords: antimicrobial activity, organic extracts, aqueous extracts, Thymus numidicus
Procedia PDF Downloads 185165 Urea Treatment of Low Dry Matter Oat Silage
Authors: Noor-ul-Ain, Muhammad Tahir Khan, Kashif Khan, Adeela Ajmal, Hamid Mustafa
Abstract:
The objective of this study was to evaluate the preservative and upgrading potential of urea (70g/kg DM) added to high moisture oat silage at laboratory scale trial and urea was hydrolysed 95%. Microbial activity measured by pH and volatile fatty acids (VFA) and lactate production was reduced (p<0.001) by the urea addition. The pH of oat silage (without treated) was measured 5.7 and increased up to 8.00 on average while; volatile fatty acids (VFA) concentration was decreased. Relative proportions of fermentation acids changed after urea addition, increasing the acetate and butyrate and decreasing the propionate and lactate proportions. The addition of urea to oat silages increased (P<0.001) water soluble and ammonium nitrogen of the forage. These nitrogen fractions represented more than 40% of total nitrogen. After urea addition, total nitrogen content of oat silages increased from 21.0 g/kg DM to 28 g/kg DM. Application of urea at a rate of 70 g/kg DM significantly increased (P<0.001) the in situ degradation of neutral-detergent fibre after 48h of rumen incubation (NDF-situ). The NDF-situ was 200 g/kg NDF higher on oat forages ensiled with urea than on oat forages ensiled without urea. Oat silages can be effectively preserved and upgraded by ensiling with 70 g urea/kg dry matter. Further studies are required to evaluate voluntary intake of this forage.Keywords: oat, silage, urea, pH, forage
Procedia PDF Downloads 470164 Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Different Pinus Species from Kosovo
Authors: Fatbardhë Kurti, Giangiacomo Beretta, Behxhet Mustafa, Fabrizio Gelmini, Avni Hajdari
Abstract:
Chemical profile, antioxidant and antimicrobial activity of total and fractionated essential oils (EOs) (F1 – hexane, F2 – hexane/diethyl ether, F3 – diethyl ether) derived from five Pinus species (Pinus heldreichii, P. peuce, P. mugo, Pinus nigra, P. sylvestris), were investigated. The hydrodistilled EOs and their chromatographic fractions (direct solid phase extraction, SPE) were analysed by GC-MS and 112 compounds separated and identified. The main constituents were α-pinene, β-pinene, D-limonene, β-caryophyllene, germacrene D, bornyl acetate and 3-carene. The antioxidant activities of total EOs were lower than those of the corresponding fractions, with F2 the strongest in all cases. EOs and fractions showed different degrees of antibacterial efficacy against different microbial pathogens (moderately strong antimicrobial activity against C. albicans and C. krusei ,while low or no activity against E. faecalis and E. coli strains). The detected inhibition zones and MICs for the EOs and fractions were in the range of 14 -35 mm and 0.125 - 1% (v/v), respectively. The components responsible for the antioxidant and antimicrobial activity were oxygenated monoterpenes and sesquiterpenes recovered in the polar EO fractions. These activities seem to be regulated by reciprocal interactions among the different subclasses of phytochemical species present in the EOs.Keywords: antagonism, antioxidant activity, antibacterial activity, essential oil, fractions, GC-MS, pinus
Procedia PDF Downloads 232163 Suppression of DMBA/TPA-Induced Skin Tumorigenesis by Menthol through Inhibition of Inflammation, NF-kappaB, Ras-Raf-ERK Pathway
Authors: Zhaoguo Liu, Cunsi Shen, Yin Lu
Abstract:
Growing evidence has shown that menthol has potent anticancer activity in various human cancers. However, its effect on skin cancer remains largely unknown. In the present study, we investigated the chemopreventive potential of menthol against 7, 12-dimethylbenz[a] anthracene(DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA)-induced skin tumorigenesis in ICR mice. Our results showed that menthol significantly inhibited TPA-induced inflammatory responses and pro-inflammatory cytokine release. We also found that menthol treatment significantly inhibited TPA-induced lipid peroxidation (LPO), mouse UDP-glucumno-syltransferase (UGT), mouse NADH Dehydrogenase, Quinone 1 (NQO1) release. Furthermore, we found menthol treatment significantly inhibited the tumor incidence and number of tumors (P < 0.001). Interestingly, we observed that menthol treatment significantly inhibited TPA-induced altered activity of NF-κB in skin tumor. Consistently, menthol-treated tumors also showed significantly suppressed the Ras-Raf-ERK signaling pathway. Thus, our results suggest that menthol inhibits DMBA/TPA-induced skin tumorigenesis by attenuating the Ras and inhibiting NF-κB activity via inhibition of inflammation responses and pro-inflammatory cytokine release.Keywords: DMBA/TPA, NF-κB, Ras-Raf-ERK, skin tumorigenesis
Procedia PDF Downloads 314162 Kinetics and Mechanism of Oxidation of Co (II) Ternary Complexes Involving N-(2-Acetamido) Iminodiacete and Some Amino Acids Acid by Periodate
Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed
Abstract:
The kinetics of oxidation of the cobalt (II) complexes, [CoII(ADA)(Gly)(H2O)2]-, (ADA = N-(2-acetamido) iminodi-acetic acid and (Gly = Glycine) by periodate in aqueous acetate medium to cobalt (III) have been studied spectrophotometrically at 530 nm over the 30–50°C and a variety pH 4.57-5.25 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Gly)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}. Also, the kinetics of oxidation of the cobalt(II) complexes, [CoII(ADA)(Val)(H2O)2]- (ADA = N-(2-acetamido) iminodi-acetic acid and (Val = valine) by periodate in aqueous medium to cobalt (III) have been studied spectrophotometrically at 580 nm over the 30–50°C and a variety pH 4.3-5.12 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Val)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}Keywords: periodate, oxidation, cobalt (II), glycine, valine acid, n-(2-acetamido imino-diacetato)
Procedia PDF Downloads 212161 Synthesis of Telechelic Polymers for Asphalt Pavements
Authors: Paula C Arroyo, Norma A Sánchez, Mikhail Tlenkopatchev
Abstract:
The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees.Keywords: asphalt polymers, metathesis polymers, telechelic polymers, modified asphalt
Procedia PDF Downloads 274160 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films
Authors: Esubalew Yehualaw Melaku, Tizazu Abeza
Abstract:
ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells
Procedia PDF Downloads 131159 Plant Cell Culture to Produce Valuable Natural Products
Authors: Jehad Dumireih, Malak Dmirieh, Michael Wink
Abstract:
The present work is aimed to use plant cell suspension cultures of Crataegus monogyna for biosynthesis of valuable natural products by using quercetin as an inexpensive precursor. Suspension cell cultures of C. monogyna were established by using Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L kinetin. Cells were harvested from the cultures and extracted by using methanol and ethyl acetate; then the extracts were used for the identification of isoquercetin by HPLC and by mass spectrometry. The incubation of the cells with 0.24 mM quercetin for one week resulted in an 16 fold increase of isoquercetin biosynthesis; the growth rate of the cells increased by 20%. Moreover, the biosynthesis of isoquercetin was enhanced by 40% when we divided the added quercetin into three portions each one with concentration 0.12 mM supplied at 3 days intervals. In addition, we didn’t find any positive effects of adding different concentrations the precursors phenylalanine (0.2 mM) and galactose to the cell cultures. In conclusion, the efficiency of the biotransformation of quercetin into isoquercetin depended on the concentration quercetin, its incubation time and the way of its administration. The results of the present work suggest that the biotechnological methods such as cell suspension cultures could be successfully used to obtain highly valuable natural product starting from inexpensive compound.Keywords: biosynthesis, biotransformation, Crataegus, isoquercetin
Procedia PDF Downloads 499158 Exploring the 1,3-Dipolar Cycloaddition Reaction between Nitrilimine and 6-Methyl-4,5-dihydropyridazin-3(2h)-one through MEDT and Molecular Docking Analysis
Authors: Zineb Ouahdi
Abstract:
Spirocyclic compound derivatives, with their unique heterocyclic motifs, serve as a continual source of inspiration in the pursuit of developing potential therapeutic agents. These compounds are diverse in their chemical structures; some have fully saturated skeletons, while others are partially unsaturated. Nevertheless, these compounds share a characteristic feature with natural products - the presence of at least one heteroatom in one of their rings. The inclusion of a C = O dipolarophile in pyridazinones imparts an exciting aspect for 1,3-dipolar cycloaddition reactions, the focal point of our study. Our research has involved a detailed theoretical investigation of the reaction between ethyl (Z)-2-bromo-2-(2-(p-tolyl)hydrazono)acetate and 6-methyl-4,5-dihydropyridazine-3(2H)-one. This has been accomplished using the DFT/B3LYP/6-31g(d,p) method, intending to illuminate the chemical pathway of this reaction. The chemical reactivity theories we used for this purpose included FMO, TS, and local and global indices derived from conceptual DFT. The theoretical framework outlined in this study allowed us to propose a reaction mechanism for cycloaddition reactions. It also enabled the identification of the potential activities of the analyzed compounds (P1, P2, P3, P4, P5, and P6) against the major protease of the coronavirus disease (COVID-19). This was achieved using various computational tools, including AutoDock Tools, Autodock Vina, Autodock 4, and PYRX.Keywords: MEDT, pyridazin, cycloaddition, FMO, DFT, docking
Procedia PDF Downloads 102157 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation
Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag
Abstract:
Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.Keywords: mixed matrix membrane, membrane, CO₂/CH₄ separation, activated carbon
Procedia PDF Downloads 342156 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route
Authors: Sudhir Kumar Sharma, Ramesh Jagannathan
Abstract:
The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route
Procedia PDF Downloads 136155 Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media
Authors: M. Merabet-Khelassi, Z. Houiene, L. Aribi-Zouioueche, O. Riant
Abstract:
Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500).Keywords: alkaline-hydrolysis, enzymatic kinetic resolution, lipases, arylalkylcarbinol, non-aqueous media
Procedia PDF Downloads 162154 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.Keywords: ZnO thin films, sol-gel, photocatalysis, aging time
Procedia PDF Downloads 382153 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma
Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood
Abstract:
Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib
Procedia PDF Downloads 391152 Acclimatation of Bacterial Communities for Biohydrogen Production by Co-Digestion Process in Batch and Continuous Systems
Authors: Gómez Romero Jacob, García Peña Elvia Inés
Abstract:
The co-digestion process of crude cheese whey (CCW) with fruit vegetable waste (FVW) for biohydrogen production was investigated in batch and continuous systems, in stirred 1.8 L bioreactors at 37°C. Five different C/N ratios (7, 17, 21, 31, and 46) were tested in batch systems. While, in continuous system eight conditions were evaluated, hydraulic retention time (from 60 to 10 h) and organic load rate (from 21.96 to 155.87 g COD/L d). Data in batch tests showed a maximum specific biohydrogen production rate of 10.68 mmol H2/Lh and a biohydrogen yield of 449.84 mL H2/g COD at a C/N ratio of 21. In continuous co-digestion system, the optimum hydraulic retention time and organic loading rate were 17.5 h and 80.02 g COD/L d, respectively. Under these conditions, the highest volumetric production hydrogen rate (VPHR) and hydrogen yield were 11.02 mmol H2/L h, 800 mL H2/COD, respectively. A pyrosequencing analysis showed that the main acclimated microbial communities for co-digestion studies consisted of Bifidobacterium, with 85.4% of predominance. Hydrogen producing bacteria such as Klebsiella (9.1%), Lactobacillus (0.97%), Citrobacter (0.21%), Enterobacter (0.27%), and Clostridium (0.18%) were less abundant at this culture period. The microbial population structure was correlated with the lactate, acetate, and butyrate profiles obtained. Results demonstrated that the co-digestion of CCW with FVW improves biohydrogen production due to a better nutrient balance and improvement of the system’s buffering capacity.Keywords: acclimatation, biohydrogen, co-digestion, microbial community
Procedia PDF Downloads 556151 Effect of TPA and HTLV-1 Tax on BRCA-1 and ERE Controlled Genes Expression
Authors: Azhar Jabareen, Mahmoud Huleihel
Abstract:
BRCA-1 is a multifunctional tumor suppressor, whose expression is activated by the estrogen (E2)-liganded ERα receptor. The activated ERα is a transcriptional factor which activates various genes either by direct binding to the DNA at E2-responsive elements (EREs) and indirectly associated with a range of alternative non-ERE elements. Interference with BRCA-1 expression and/or functions leads to high risk of breast or/and ovarian cancer. Our lab investigated the involvement of Human T-cell leukemia Virus Type 1 (HTLV-1) in breast cancer, since HTLV-1 Tax was found to strongly inhibit BRCA-1 expression. In addition, long exposure of 12-O-tetradecanoylphorbol-13-acetate (TPA), which is one of the stress-inducing agents activated the HTLV-1 promoter. So here the involvement of TPA in breast cancer had been examined by testing the effect of TPA on BRCA-1 and ERE expression. The results showed that TPA activated both BRCA-1 and ERE expression. In the 12 hours TPA activated the tow promoters more than others time, and after 24 hours the level of the tow promoters was decreased. Tax inhibited BRCA-1 expression but did not succeed to inhibit the effect of TPA. Then the activation of the two promoters was not through ERα pathway because TPA had no effect on ERα binding to the two promoters of the BRCA-1 and ERE. Also, the activation was not via nuclear factor kappa B (NF-κB) pathway because when the inhibitory of NF-κB had been added to the TPA, it still activated the tow promoters. However, it seems that 53BP1 may be involved in TPA activation of these promoters because ectopic high expression of 53BP1 significantly reduced the TPA activity. In addition, in the presence of Bisindolylmaleimide-I (BI)- the inhibitor of Protein Kinase C (PKC)- there was no activation for the two promoters, so the PKC is agonized BRCA-1 and ERE activation.Keywords: BRCA-1, ERE, HTLV-1, TPA
Procedia PDF Downloads 248150 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus
Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai
Abstract:
The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.Keywords: Staphylococcus aureus, Escherichia coli, Phellinus linteus, Methicillin-resistant Staphylococcus aureus, antimicrobial activity
Procedia PDF Downloads 284149 Introducing α-Oxoester (COBz) as a Protecting Group for Carbohydrates
Authors: Atul Kumar, Veeranjaneyulu Gannedi, Qazi Naveed Ahmed
Abstract:
Oligosaccharides, which are essential to all cellular organisms, play vital roles in cell recognition, signaling, and are involved in a broad range of biological processes. The chemical synthesis of carbohydrates represents a powerful tool to provide homogeneous glycans. In carbohydrate synthesis, the major concern is the orthogonal protection of hydroxyl groups that can be unmasked independently. Classical protecting groups include benzyl ethers (Bn), which are normally cleaved through hydrogenolysis or by means of metal reduction, and acetate (Ac), benzoate (Bz) or pivaloate esters, which are removed using base promoted hydrolysis. In present work a series of α-Oxoester (COBz) protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac), were designed and KHSO₅/CH₃COCl in methanol was identified as an easy, mild, selective and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of later reagent was advantageous in establishing both sequential as well as simultaneous deprotecting of COBz, Bz, and Ac. The salient feature of our work is its ease to generate different acceptors using designed monosaccharides. In summary, we demonstrated α-Oxoester (COBz) as a new protecting group for carbohydrates and the application of this group for the synthesis of Glycosylphosphatidylinositol (GPI) anchor are in progress.Keywords: α-Oxoester, oligosaccharides, new protecting group, acceptor synthesis, glycosylation
Procedia PDF Downloads 150148 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA
Procedia PDF Downloads 451147 Heterologous Expression of Heat-Shock Protein Improves Butanol Yield in a High-Speedy Growing Clostridium acetobutylicum Mutant
Authors: Min-Shiuan Liou, Yi Shan Yang, Yang-Zhan Huang, Chia-Wen Hsieh
Abstract:
A high speed growing and butanol-tolerant Clostridium acetobutylicum HOL1 mutant was screened throughout continuous adaption culture with C. acetobutylicum ATCC 824. The HOL1 strain can grow well in 10 g/L butanol contained CGM medium and can produce about 12.8 g /L butanol during 24 hrs. The C. acetobutylicum HOL1 strain was able to produce 166 mM butanol with 21 mM acetone at pH 4.8, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.79, which is much higher than that (0.6) of the wild-type strain C. acetobutylicum ATCC 824. The acetate and butyrate accumulation were not observed during fermentation of the HOL1 strain. A hyper-butanol producing C. acetobutylicum HOL1 (pBPHS-3), which was created to overexpress the Bacillus psychrosaccharolyticus originated specific heat-shock protein gene, hspX, from a clostridial phosphotransbutyrylase promoter, was studied for its potential to produce a high titer of butanol. Overexpression of hspX resulted in increased final butanol yield 47% and 30% higher than those of the the ATCC824 and the HOL1 strains, respectively. The remarkable high-speed growth and butanol tolerance of strain HOL1 (pBPHS-3) demonstrates that overexpression of heterogeneous stress protein-encoding gene, hspX, could help C. acetobutylicum to effectively produce a high concentration of butanol.Keywords: Clostridium acetobutylicum, butanol, heat-shock protein, resistance
Procedia PDF Downloads 429146 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia
Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan
Abstract:
Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity
Procedia PDF Downloads 296145 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS
Authors: Bashar Al-Sabti, Jehad Harbali
Abstract:
Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS
Procedia PDF Downloads 95144 Phytochemical and Antimicrobial Studies of Root Bark Extracts from Glossonema boveanum (Decne.)
Authors: Ahmed Jibrin Uttu, Maimuna Waziri
Abstract:
The root bark of Glossonema boveanum (Decne), a member of Apocynaceae family, is used by traditional medicine practitioner to treat urinary and respiratory tract infections, bacteremia, typhoid fever, bacillary dysentery, diarrhea and stomach pain. This present study aims to validate the medicinal claims ascribed to the root bark of the plant. Preliminary phytochemical study of the root bark extracts (n-hexane, ethyl acetate, chloroform and methanol extracts) showed the presence of alkaloids, carbohydrates, steroids, triterpenes, cardiac glycosides, saponins, tannins and flavonoids. Antimicrobial study of the extracts showed activities against Staphylococus aureus, Bacillus subtilis, Salmonella typhii, Shigella dysenteriae, Escherichia coli, Enterobacter cloacae, Streptococcus agalactiae and Candida albicans while Micrococcus luteus, Pseudomonas aeruginosa and Klebsiella Pneumoniae showed resistance to all the extracts. The inhibitory effect was compared with the standard drug ciprofloxacin and fluconazole. MIC and MBC for both extracts were also determined using the tube dilution method. This study concluded that the root bark of G. boveanum, used traditionally as a medicinal plant, has antimicrobial activities against some causative organisms.Keywords: Glossonema boveanum (Decne.), phytochemical, antimicrobial, minimum inhibitory concentration, minimum bactericidal concentration
Procedia PDF Downloads 268143 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids
Authors: Muhammad Mazhar, Yong Zhu, Likang Qin
Abstract:
Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes
Procedia PDF Downloads 73142 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies
Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi
Abstract:
The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions
Procedia PDF Downloads 195141 Synthesis and Biological Evaluation of Pyridine Derivatives as Antimicrobial Agents
Authors: Dagim Ali Hussen, Adnan A. Bekhit, Ariaya Hymete
Abstract:
In this study, several pyridine derivatives were synthesized and evaluated for their in vitro antimicrobial activity against gram-positive bacteria (S. aureus and B. Cereus), gram-negative bacteria (P. aeruginosa and E. coli) and fungus (C. albican and A niger). The intermediate chalcone derivative 2a,b was synthesized by condensation of pyrazole aldehydes 1a,b with acetophenone in alcoholic KOH. Cyclization of 2a,b with ethyl cyanoacetate ad ammonium acetate resulted in pyridine carbonitrile derivatives 3a,b. Furthermore, condensation of pyridine-4-carboxaldeyhe with different amino-derivatives gave rise to pyridine derivatives 5a,b, 6a,b. The oxadiazole derivative 7a was prepared by cyclization of 6a with acetic anhydride. Characterization of the synthesized compound was performed using IR, 1H NMR, 13C NMR spectra and elemental microanalyses. The antimicrobial results revealed that compounds 5a, 6b and 7a exhibited half fold antibacterial activity compared to ampicillin, against B. cereus. On the other hand, compound 3b showed an equivalent activity compared to miconazole against candida albican (CANDAL 03) and to clotrimazole against the clinical isolate candida albican 6647. Moreover, this compound 3b was further tested for its acute toxicity profile. The results showed that oral LD50 is more that 300 mg/kg and parentral LD50 is more than 100 mg/kg. Compound 3b is a good candidate for antifungal agent with good toxicity profile, and deserves more chemical derivatization and clinical study.Keywords: antifungal, antimicrobial, Candida albican, pyridine
Procedia PDF Downloads 498140 Current Medical and Natural Synchronization Methods in Small Ruminants
Authors: Mehmet Akoz, Mustafa Kul
Abstract:
Ewes and goats are seasonally polyestrus animals. Their reproductive activities are associated with the reduction or extending of daylight. Melatonin releasing from pineal gland regulates the sexual activities depending on daylight. In recent years, number of ewes decreased in our country. This situation dispatched to developing of some methods to increase productivity. Small ruminants can be synchronized with the natural and medical methods. known methods from natural light set with ram and goat participation. The most important natural methods of male influence, daylight is regulated and feed. On the other hand, progestagens, PGF2α, melatonin, and gonadotropins are commonly used for the purpose of estrus synchranization. But it is not effective PGF2α anestrous season The short-term and long-term progesterone treatment was effective to synchronize estrus in small ruminats during both breeding and anestrus seasons. Alternative choices of progesterone/progestagen have been controlled internal drug release (CIDR) devices, supplying natural progesterone, norgestomet implants, and orally active melengestrol acetate Melatonin anestrous season and should be applied during the transition period, but the season can be synchronized. Estrus synchronisation shortens anestrus season, decreases labor for mating/insemination and estrus pursuit, and induces multiple pregnancies.Keywords: ewes, goat, synchronization, progestagen, PGF2α
Procedia PDF Downloads 342139 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound
Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim
Abstract:
People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution
Procedia PDF Downloads 268138 Punica granatum (Pomegranate) of a Libyan Variety Exhibits in vitro Anti-Inflammatory Potential
Authors: Lamees A. Ben Saad, Kah Hwi Kim, Chin Chew Quah, Mustafa Shahimi
Abstract:
Background: Punica granatum (pomegranate) was used as a traditional medicine in different parts of the world. It has been used in the treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of the ethyl acetate pomegranate fraction (EtOAc) by determination of its inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX2) release from RAW264.7cells. Methods: The inhibitory effect of EtOAc was evaluated on (LPS) induced NO production, PGE2, and IL-6 quantified by immunoassay kit and prostaglandin E2 competitive ELISA kit. COX2 production is an in vitro indication of possible anti-inflammatory activity and was estimated by Western blotting. Results: EtOAc potentially inhibited LPS-induced nitric oxide, prostaglandin, and IL-6 production. With these findings, it was evident that the EtOAc could reduce the LPS-induced cyclooxygenase-2 (COX-2) at the protein level in a dose-dependent manner as determined by Western blotting. Conclusion: The results emphasize potential therapeutic applications of Punica granatum in the treatment of inflammation.Keywords: inflammation, Punica granatum, cytotoxicity, cytokines
Procedia PDF Downloads 660