Search results for: neural perception.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3795

Search results for: neural perception.

1455 The Impact of Stress and Coping Style on Educational Involvement among Fathers to Children with Special Needs in Inclusive Education

Authors: Aviva Lvan, Lipaz Shamoa-Nir

Abstract:

Recently, has increased the research interest in modern fatherhood especially, the increasing involvement of fathers in the family. However, there is a little research evidence on fathers to children with special needs. Therefore, the purpose of this study was to examine the effects of stress and coping style on involvement in school among fathers to children with special needs in inclusive education. We compared the fathers to children with special needs (N=72) with fathers to non-special needs children (N = 75), and found that higher stress levels, greater educational involvement and greater use of social support coping style, were found among fathers of children with special needs. In addition, mission coping style and emotional coping style predict involvement in the school and emotional coping style predicts high levels of stress. The above findings contribute to the investigation of changes in the perception of the role of fathers and their involvement in their children's lives especially, among fathers to children with special needs. From the applied aspect, the findings may increase the understanding of the role of fathers and their unique contribution to the social, emotional, and academic development of their children.

Keywords: coping style, educational involvement, special needs, stress

Procedia PDF Downloads 436
1454 Challenges to Press Freedom in Pakistan

Authors: Awais Ahmad

Abstract:

People of Khyber Pakhtunkhwa (KP) and Federally Administered Tribal Areas (FATA) remains underrepresented in Pakistan’s mainstream media and their miseries and concerns are unheard and unnoticed. Rising the incidents of human rights violation in KP province of Pakistan, and its absence in the mainstream media has raised many questions on the clause of press freedom known as 19/A in the constitution of Pakistan, that has claimed freedom of speech to all Pakistani citizens. Using a ‘think a loud’ research technique, senior most journalists of KP have been interviewed to get to know reasons of why and how Pashtun’s voices have been silenced in a democratic country where individual’s opinion is considered more powerful, and they can exercise freedom to protest and speak-up for their rights. The information collected from the journalists has been used to evaluate press freedom in KP and FATA by applying the institutional theory. The paper evaluates different recent cases where Pashtun journalists, media outlets and social activists were being punished for criticizing authorities and military establishment. This study also explores that the perception of local journalists regarding press freedom and what are the factors they consider it restrictions while they perform their duties.

Keywords: press freedom, federally administered tribal areas (fata), khyber pakhtunkhwa (kp), military establishment

Procedia PDF Downloads 67
1453 Cyber Security in Russia: Offense, Defense and Strategy in Cyberspace

Authors: Da Eun Sung

Abstract:

In today’s world, cyber security has become an important international agenda. As the information age has arrived, the need for cyber defense against cyber attacks is mounting, and the significance of cyber cooperation in the international community is drawing attention. Through the course, international society has agreed that the institutionalization of international norms dealing with cyber space and cyber security is crucial ever. Nevertheless, the West, led by the United States of America, and 'the East', composed of Russia and China, have shown conflicting views on forming international norms and principles which would regulate and ward off the possible threats in cyber space. Thus, the international community hasn’t yet to reach an agreement on cyber security. In other words, the difference between both sides on the approach and understanding of principles, objects, and the definition has rendered such. Firstly, this dissertation will cover the Russia’s perception, strategy, and definition on cyber security through analyzing primary source. Then, it will delve into the two contrasting cyber security strategy between Russia and the US by comparing them. And in the conclusion, it will seek the possible solution for the cooperation in the field of cyber security. It is quite worthwhile to look into Russia’s views, which is the main counterpart to the US in this field, especially when the efforts to institutionalize cyber security by the US-led international community have met with their boundaries, and when the legitimacy of them have been challenged.

Keywords: cyber security, cyber security strategic, international relation in cyberspace, Russia

Procedia PDF Downloads 319
1452 Monitoring Public Attitudes Towards Tourism Valorisation of the Dinara Nature Park’s Dry Grasslands

Authors: Sven Ratković

Abstract:

The survey of public attitudes and knowledge was conducted as part of the Dinara back to LIFE project during June and July 2020. The aim of the research was to collect public opinions and knowledge on the topics of the biodiversity of Dinara, perception of tourist potential, sustainable development, and acceptance of the project. The research was conducted using the survey method in the cities of Sinj, Knin, Vrlika, and Trilj, and the municipalities of Hrvace, Otok, Kijevo, and Civljane, where a total of 404 people were surveyed. The respondents perceive the cultural and recreational potential of Dinara and recognize it as a potential for agriculture and tourism. According to respondents, the biological diversity of Dinara is most affected by fires and human activity. When it comes to nature protection, the majority of respondents don’t trust local self-government units and relevant ministries. The obtained results indicate the need for informing and educating the community, and they serve to adjust the project activities and better guide the touristic development of the project area. The examination will be repeated in the last project year (2023).

Keywords: protected area tourism, Dinara Nature Park, dry grasslands, touristic infrastructure

Procedia PDF Downloads 98
1451 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 297
1450 The Contribution of Lower Visual Channels and Evolutionary Origin of the Tunnel Effect

Authors: Shai Gabay

Abstract:

The tunnel effect describes the phenomenon where a moving object seems to persist even when temporarily hidden from view. Numerous studies indicate that humans, infants, and nonhuman primates possess object persistence, relying on spatiotemporal cues to track objects that are dynamically occluded. While this ability is associated with neural activity in the cerebral neocortex of humans and mammals, the role of subcortical mechanisms remains ambiguous. In our current investigation, we explore the functional contribution of monocular aspects of the visual system, predominantly subcortical, to the representation of occluded objects. This is achieved by manipulating whether the reappearance of an object occurs in the same or different eye from its disappearance. Additionally, we employ Archerfish, renowned for their precision in dislodging insect prey with water jets, as a phylogenetic model to probe the evolutionary origins of the tunnel effect. Our findings reveal the active involvement of subcortical structures in the mental representation of occluded objects, a process evident even in species that do not possess cortical tissue.

Keywords: archerfish, tunnel effect, mental representations, monocular channels, subcortical structures

Procedia PDF Downloads 45
1449 Livelihood and Willingness to Accept Reducing Emission from Deforestation and Degradation by Local People in the Southwestern Nigeria

Authors: Adebayo John Julius, Emmanuel Imoagene

Abstract:

Mitigating global warming through reducing emission from deforestation and degradation (REDD) has been given increasing attentions in government-to-government negotiations while discussions among decision-makers have been going on, it is important to learn about the perception of local people in relation to REDD because the implementation will affect their lives. A survey was conducted using questionnaires to examine the livelihood and forest dependency of the local people in the vicinity of Onigambari and Ido area. Respondents’ income from forest activities and forest resources are collected. Participation in tourism related activities among the household members was also investigated to measure the potential of this “eco-friendly” income generation activity in the local communities. There was a general indication of reducing slash-and-burn activities with distance from the park and involvement in tourism-related job. Most of the local people were willing to accept compensation as alternative for slash-and-burn activities. The compensation preferred is in various form of development and different level of forest and environmental activities

Keywords: livelihood, emission, deforestation, degradation, local people, southwest Nigeria

Procedia PDF Downloads 143
1448 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 252
1447 Equity in Public Health: Perception from the Anti-Retroviral Therapy (ART) Program for HIV- Patients in India

Authors: Koko Wangjam, Naresh Kumar Sharma

Abstract:

The concern for most public health policies and decision- makers is the equitable distribution of health care resource of the nation. Also, in public health care system, the primary aim is assuaging the burden of the disease. Objective: This paper captures and evaluates some important theories in equity in health with its relevance with the ART program in India. Methodology: The paper is exploratory and descriptive study based on secondary data. The sources of secondary data are published official reports from NACO (National AIDS Control Organisation), United Nations AIDS Program (UNAIDS), World Health Organisation (WHO) etc. Observation: The roll-out of the ART program in 2004 by the Govt. of India made a paradigm shift in HIV/AIDS scenario in the country. Conclusion: There are many theoretical injunctions in most of the principles and approaches in existing theories of health equity. The enervation of HIV infection by taking ART drugs had helped in curbing the prevalence and the fact that it is provided at free of cost has proven this program to be an epitome in distributive justice in public health.

Keywords: art program, burden of the disease, health equity, hiv/aids

Procedia PDF Downloads 394
1446 The Effects of an Intervention Program on Psychosocial Factors and Consequences during the COVID-19 Pandemic in a Chilean Technology Services Company: A Quasi-Experimental Study

Authors: Julio Lavarello-Salinas, Verónica Kramm-Vergara, Pedro Gil-La Orden

Abstract:

During the COVID-19 pandemic, mental health became a relevant factor in people’s performance within organizations. The aim of this study was to analyze the effects of an organizational intervention program on the psychosocial factors of demands, resources, and the consequences of psychosocial risks in a technology services company during the COVID-19 pandemic. A quasi-experimental study was carried out with 105 employees who took part in an eight-week intervention program divided into two large stages. Pre- and post- measurements were collected using the UNIPSICO Questionnaire, considering its factors of demands, resources, and consequences of psychosocial risks. The Spanish Burnout Inventory (SBI) was also included. The results showed significant improvements in the perception of some psychosocial demand factors, all the resource factors, and all the consequences of psychosocial risks, except the guilt dimension of the SBI. Thus, we can conclude that the program was effective and that the study limitations should be improved in future studies.

Keywords: UNIPSICO questionnaire, occupational health, work stress, work psychosocial risk

Procedia PDF Downloads 105
1445 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165
1444 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 545
1443 Shaping the Image of Museum Events in the Digital Media Era: A Quantitative Analysis of the Cat-Themed ‘Night at the Museum’ Event

Authors: Shuyu Zhao

Abstract:

This study uses the cat-themed "Night at the Museum" event of the Shanghai Museum as a case to examine how museum events are portrayed across various digital news platforms. Grounded in communication and cultural creativity theories and employing a three-tier framing approach, this research provides an in-depth analysis of media strategies in cross-platform museum image building. Through a quantitative content analysis, it is investigated that how digital media employ specific narrative strategies to shape the public perception of museum events. The findings reveal a prevalent use of leadership framing, highlighting the museum's unique role in cultural dissemination. By combining elements of museum culture with a pet-friendly theme, the "catty Night at the Museum" event serves as a distinctive example in exploring museum image construction within digital media. This study sheds light on how museum events, as unique cultural arenas, are positioned in the public mind, offering a fresh perspective for the promotion and image-building of museum activities.

Keywords: cultural communication, digital media, museum, framing theory

Procedia PDF Downloads 19
1442 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
1441 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 130
1440 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 191
1439 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 618
1438 Examining Foreign Student Visual Perceptions of Online Marketing Tools at a Hungarian University

Authors: Anita Kéri

Abstract:

Higher education marketing has been a widely researched field in recent years. Due to the increasing competition among higher education institutions worldwide, it has become crucial to target foreign students with effective marketing tools. Online marketing tools became central to attracting, retaining, and satisfying the needs of foreign students. Therefore, the aim of the current study is to reveal how the online marketing tools of a Hungarian university are perceived visually by its first-year foreign students, with special emphasis on the university webpage content. Eye-camera tracking and retrospective think-aloud interviews were used to measure visual perceptions. Results show that freshmen students remember those online marketing content more that has familiar content on them. Pictures of real-life students and their experiences attract students’ attention more, and they also remember information on these webpage elements more, compared to designs with stock photos. This research is novel in the sense that it uses eye-camera tracking in the field of higher education marketing, thereby providing insight into the perception of online higher education marketing for foreign students.

Keywords: higher education, marketing, eye-camera, visual perceptions

Procedia PDF Downloads 100
1437 Analyzing the Factors Effecting Ceramic Porosity Using Integrated Taguchi-Fuzzy Method

Authors: Enes Furkan Erkan, Özer Uygun, Halil Ibrahim Demir, Zeynep Demir

Abstract:

Companies require increase in quality perception level of their products due to competitive conditions. As a result, the tendency to quality and researches to develop the quality are increasing day by day. Cost and time constraints are the biggest problems that companies face in their quality improvement efforts. In this study, factors that affect the porosity of ceramic products are determined and analyzed in a factory producing ceramic tiles. Then, Taguchi method is used in the design phase in order to decrease the number of tests to be performed by means of orthogonal sequences. The most important factors affecting the porosity of ceramic tiles are determined using Taguchi and ANOVA analysis. Based on the analyses, the most affecting factors are determined to be used in the fuzzy implementation stage. Then, the fuzzy rules were established with the factors affecting porosity by the experts’ opinion. Thus, porosity result could be obtained not only for the specified factor levels but also for intermediate values. In this way, it has been provided convenience to the factory in terms of cost and quality improvement.

Keywords: fuzzy, porosity, Taguchi Method, Taguchi-Fuzzy

Procedia PDF Downloads 437
1436 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 444
1435 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
1434 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval

Procedia PDF Downloads 131
1433 Jean-Francois Lyotrard's Concept of Different and the Conceptual Problems of Beauty in Philosophy of Contemporary Art

Authors: Sunandapriya Bhikkhu, Shimo Sraman

Abstract:

The main objective of this research is to analytically study the concept of Lyotard’s different that rejects the monopoly criteria and single rule with the incommensurable, which can explain about conceptual problems of beauty in the philosophy of contemporary art. In Lyotard’s idea that basic value judgment of human should be a value like a phrase that is a small unit and an individual such as the aesthetic value that to explain the art world. From the concept of the anti-war artist that rejects the concept of the traditional aesthetic which cannot be able to explain the changing in contemporary society but emphasizes the meaning of individual beauty that is at the beginning of contemporary art today. In the analysis of the problem, the researcher supports the concept of Lyotard’s different that emphasizes the artistic expression which opens the space of perception and beyond the limitations of language process. Art is like phrase or small units that can convey a sense of humanity through the aesthetic value of the individual, not social criteria or universal. The concept of Lyotard’s different awakens and challenge us to the rejection of the single rule that is not open the social space to minorities by not accepting the monopoly criteria.

Keywords: difference, Jean-Francois Lyotard, postmodern, beauty, contemporary art

Procedia PDF Downloads 307
1432 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection

Authors: Leah Ning

Abstract:

This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.

Keywords: breast cancer detection, AI, machine learning, algorithm

Procedia PDF Downloads 91
1431 Understanding the ‘Third Gender’: A Qualitative Study of the Perception of Being a Leftover Woman among Chinese Female Ph.D. Students

Authors: Qian Wang

Abstract:

In recent years, a growing number of Chinese women choose to pursue Ph.D. education. Except for the male and female, women with PhD degrees are stigmatized as the ‘third gender’ in Chinese society. People, especially most men, believe that female PhD students challenge the traditional image and gender role of Chinese women. This gender stereotype causes a range of difficulties in finding partners in marriage market for Chinese female PhD students. In this study, the author conducted in-depth interviews with 15 participants who are currently doing their PhD studies in Chinese universities to explore their perceptions of being leftover women on the basis of their experience. All the participants are single. Based on the analysis of qualitative data, this study found that the ‘leftover women’ phenomenon among Chinese female PhD students is the result of the contradictions generated between Chinese patriarchal society and them. Although Chinese female PhD students is an attention-attracting group, the studies about them are very limited in China. This study could not only contribute to the understanding of the ‘third gender’ phenomenon and the ‘leftover women’ studies in China, but also, in practical level, could give some guidance for governments to resolve the social problems of female PhD students.

Keywords: Chinese female Ph.D. students, the ‘leftover women’, the Chinese patriarchal society, gender role, Chinese culture

Procedia PDF Downloads 224
1430 Neural Correlates of Decision-Making Under Ambiguity and Conflict

Authors: Helen Pushkarskaya, Michael Smithson, Jane E. Joseph, Christine Corbly, Ifat Levy

Abstract:

Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional Magnetic Resonance Imaging (fMRI) and a simple gamble design to study this question. In this design, the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on both expected value and variance. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across subjects. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. This novel double dissociation indicates that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

Keywords: decision making, uncertainty, ambiguity, conflict, fMRI

Procedia PDF Downloads 564
1429 Benchmarking Service Quality among Quick-Service Restaurants towards Service Innovations

Authors: Scott Earthy Baldo, Anna Cred Patricia Barroma, Miguel Angelo Eñano, John Ares Hipolito, Orange Sundra Sison, Rixielle Gwendale Tumambing

Abstract:

Service Innovation is the introduction of several new-fangled ways on how to deliver service to customers with the intention to improve one’s existing service quality and to attract more customers. This research paper aims to identify the various service practices being implemented on the different quick-service restaurants within Morayta Street, Manila, Philippines and compare each establishment to the best within the industry through the process of benchmarking towards service innovations. In order for the gathering of valuable data to be possible, a mixed-method approach was used, wherein qualitative data were taken from the managers of each establishment, indicating the service practices being used, and quantitative data were collected from the customers and employees regarding their perception towards the present service quality of each selected quick-service restaurants, in line with the current service innovations being implemented. This research was conducted in order to discern which service practices are effective in attracting customers and boosting their satisfaction for future references of practitioners who are planning to manage a quick-service restaurant and for students studying in the field of hospitality, specifically on service.

Keywords: benchmarking, quick-service restaurants, service innovations, service quality

Procedia PDF Downloads 373
1428 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 132
1427 Understanding the Experience of Siblings in Multisystemic Therapy

Authors: Lily Beaumont-Griffin, Philip Reynolds, Helen Pote, Pinder Kaur

Abstract:

Siblings are a key part of the family unit, which Multisystemic Therapy (MST) intervenes, with the aim of reducing antisocial behavior and keeping families together. However, despite operating in multiple countries, including the United States of America, Europe, parts of South America, and the Western Hemisphere, there are only few previous studies on siblings within MST. According to best of authors knowledge neither of these seeks to understand the siblings' experience of the intervention nor their perception of the outcomes. This study utilized semi-structured interviews to understand the experience of seven siblings of children and adolescents who were closed to MST within the last year (2023-2024). Using reflexive thematic analysis, three themes were identified: sibling inclusion by the therapist, sharing responsibility for change, and fostering a safe and supportive environment at home. These themes express that siblings need to have a basic understanding of an intervention to be able to perceive benefits, siblings need help understanding responsibility across the whole family, and that safety is both physical and emotional. Clinical implications, including encouragement of therapists to integrate the siblings in the intervention more, and future research directions around integrating these findings into the development of iterations of MST standard are discussed.

Keywords: siblings, multisystemic therapy, family therapy, experience

Procedia PDF Downloads 47
1426 The Usefulness of Financial Certification in Taiwan

Authors: Chih-Mei Wang, Jon-Chao Hong, Jian-Hong Ye, Jing-Yun Fan, Chiao-Fei Lin

Abstract:

The value of a certificate is to implement the criteria for evaluating work ability. Some professional certificates may make people feel good, but they are not useful in the workplace. To address this issue, this study is based on the expectancy-value model to take financial certificates as an example to explore how participants perceived the value of obtaining certification related to their usage perception of career promotion and salary increase. A total of 339 valid samples were subjected to confirmatory factor analysis and structural equation modeling; the results showed that the number of professional certificates was not significantly correlated with career promotion, but the number of professional certificates is negatively related to salary and benefits (S&B), while career promotion and S&B were positively related to job performance. The results show that the number of professional certificates does not play a significant role in the expectancy-value model. Therefore, professional certifications related to a basic level of finance was not expected to obtain in Taiwan's financial industry, and it is important to study the usefulness of some other certificates in other competitive industry.

Keywords: career promotion, certificate, compensation and benefits, goal-directed behaviors, Job performance

Procedia PDF Downloads 192