Search results for: electron field emission
9197 Numerical Computation of Specific Absorption Rate and Induced Current for Workers Exposed to Static Magnetic Fields of MRI Scanners
Authors: Sherine Farrag
Abstract:
Currently-used MRI scanners in Cairo City possess static magnetic field (SMF) that varies from 0.25 up to 3T. More than half of them possess SMF of 1.5T. The SMF of the magnet determine the diagnostic power of a scanner, but not worker's exposure profile. This research paper presents an approach for numerical computation of induced electric fields and SAR values by estimation of fringe static magnetic fields. Iso-gauss line of MR was mapped and a polynomial function of the 7th degree was generated and tested. Induced current field due to worker motion in the SMF and SAR values for organs and tissues have been calculated. Results illustrate that the computation tool used permits quick accurate MRI iso-gauss mapping and calculation of SAR values which can then be used for assessment of occupational exposure profile of MRI operators.Keywords: MRI occupational exposure, MRI safety, induced current density, specific absorption rate, static magnetic fields
Procedia PDF Downloads 4329196 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice
Authors: Tarek Abdoun, Ricardo Dobry
Abstract:
This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts
Procedia PDF Downloads 3049195 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization
Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya
Abstract:
The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts
Procedia PDF Downloads 1689194 The Impact of Reducing Road Traffic Speed in London on Noise Levels: A Comparative Study of Field Measurement and Theoretical Calculation
Authors: Jessica Cecchinelli, Amer Ali
Abstract:
The continuing growth in road traffic and the resultant impact on the level of pollution and safety especially in urban areas have led local and national authorities to reduce traffic speed and flow in major towns and cities. Various boroughs of London have recently reduced the in-city speed limit from 30mph to 20mph mainly to calm traffic, improve safety and reduce noise and vibration. This paper reports the detailed field measurements using noise sensor and analyser and the corresponding theoretical calculations and analysis of the noise levels on a number of roads in the central London Borough of Camden where speed limit was reduced from 30mph to 20mph in all roads except the major routes of the ‘Transport for London (TfL)’. The measurements, which included the key noise levels and scales at residential streets and main roads, were conducted during weekdays and weekends normal and rush hours. The theoretical calculations were done according to the UK procedure ‘Calculation of Road Traffic Noise 1988’ and with conversion to the European L-day, L-evening, L-night, and L-den and other important levels. The current study also includes comparable data and analysis from previously measured noise in the Borough of Camden and other boroughs of central London. Classified traffic flow and speed on the roads concerned were observed and used in the calculation part of the study. Relevant data and description of the weather condition are reported. The paper also reports a field survey in the form of face-to-face interview questionnaires, which was carried out in parallel with the field measurement of noise, in order to ascertain the opinions and views of local residents and workers in the reduced speed zones of 20mph. The main findings are that the reduction in speed had reduced the noise pollution on the studied zones and that the measured and calculated noise levels for each speed zone are closely matched. Among the other findings was that of the field survey of the opinions and views of the local residents and workers in the reduced speed 20mph zones who supported the scheme and felt that it had improved the quality of life in their areas giving a sense of calmness and safety particularly for families with children, the elderly, and encouraged pedestrians and cyclists. The key conclusions are that lowering the speed limit in built-up areas would not just reduce the number of serious accidents but it would also reduce the noise pollution and promote clean modes of transport particularly walking and cycling. The details of the site observations and the corresponding calculations together with critical comparative analysis and relevant conclusions will be reported in the full version of the paper.Keywords: noise calculation, noise field measurement, road traffic noise, speed limit in london, survey of people satisfaction
Procedia PDF Downloads 4259193 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil
Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas
Abstract:
This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils
Procedia PDF Downloads 1489192 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 1319191 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling
Authors: Shahriar Ghammamy, Maryam Gholipoor
Abstract:
Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction
Procedia PDF Downloads 4069190 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’
Authors: Saad Bakkali
Abstract:
Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco
Procedia PDF Downloads 4249189 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 1659188 Switching Studies on Ge15In5Te56Ag24 Thin Films
Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das
Abstract:
Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.Keywords: Chalcogenides, Vapor deposition, Electrical switching, PCM.
Procedia PDF Downloads 3789187 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment
Authors: Qurbanov Huseyn Nuraddin
Abstract:
The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals
Procedia PDF Downloads 769186 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils
Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo
Abstract:
The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance
Procedia PDF Downloads 1399185 Experimental and Theoretical Study of the Electric and Magnetic Fields Behavior in the Vicinity of High-Voltage Power Lines
Authors: Tourab Wafa, Nemamcha Mohamed, Babouri Abdessalem
Abstract:
This paper consists on an experimental and analytical characterization of the electromagnetic environment in the in the medium surrounding a circuit of two 220 Kv power lines running in parallel. The analysis presented in this paper is divided into two main parts. The first part concerns the experimental study of the behavior of the electric field and magnetic field generated by the selected double-circuit at ground level (0 m). While the second part simulate and calculate the fields profiles generated by the both lines at different levels above the ground, from (0 m) to the level close to the lines conductors (20 m above the ground) using the electrostatic and magneto-static modules of the COMSOL multi-physics software. The implications of the results are discussed and compared with the ICNIRP reference levels for occupational and non occupational exposures.Keywords: HV power lines, low frequency electromagnetic fields, electromagnetic compatibility, inductive and capacitive coupling, standards
Procedia PDF Downloads 4769184 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants
Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade
Abstract:
In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling
Procedia PDF Downloads 1769183 Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate
Authors: E. Changizi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian
Abstract:
In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification.Keywords: graphen oxide, functionalization, polyisocyanate, XRD, TGA, FTIR
Procedia PDF Downloads 4489182 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid
Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty
Abstract:
Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction
Procedia PDF Downloads 3089181 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh
Abstract:
Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures
Procedia PDF Downloads 5159180 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future
Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino
Abstract:
Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery
Procedia PDF Downloads 809179 Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis
Authors: Ahlam Chennani, Nadia Anter, Abdelouahed Médaghri Alaoui, Abdellah Hannioui
Abstract:
Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields.Keywords: nanoparticles, hydrosilylation, catalysts, non-precious metal
Procedia PDF Downloads 349178 Surveillance of Super-Extended Objects: Bimodal Approach
Authors: Andrey V. Timofeev, Dmitry Egorov
Abstract:
This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM
Procedia PDF Downloads 4759177 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 909176 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar Mehrafarin, Reza Mehrafarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: archaeological surveys, computer use, iran, modern technologies, sistan
Procedia PDF Downloads 829175 Review and Evaluation of Viscose Damper on Structural Responses
Authors: Ehsan Sadie
Abstract:
Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper
Procedia PDF Downloads 1199174 Use of Nanoclay in Various Modified Polyolefins
Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek
Abstract:
Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite
Procedia PDF Downloads 5399173 Preparation of MgO Nanoparticles by Green Methods
Authors: Maryam Sabbaghan, Pegah Sofalgar
Abstract:
Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.Keywords: MgO, ionic liquid, nanoparticles, green chemistry
Procedia PDF Downloads 2959172 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect
Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz
Abstract:
Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility
Procedia PDF Downloads 2719171 Determination of Heavy Metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni and Zn) in 6 Important Commercial Fish Species in North of Hormoz Strait
Authors: Majid Afkhami, Maryam Ehsanpour, Zahra Khoshnood
Abstract:
The concentrations of 10 heavy metals (Cd, Pb, Hg, Cu, Fe, Mn, Al, As, Ni, Zn) were measured in muscle, gill and liver of 6 species from Hormoz Strait in north coast of Persian Gulf in 12 months (April 2009 – March 2010). All samples were analyzed three times for Cd, Pb, Cu, Fe, Mn, Al, As, Ni, Zn by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and for Hg by LECO AMA254 Advanced Mercury Analyzer. Results of this study showed that iron had the highest concentration (total mean concentration) in all species, followed by Zn, Cu, Ni, Al, Pb, Mn, Cd, Hg and lowest concentration in three tissues was As. In addition, the accumulation of metals was species-dependent, and was higher in Scomberomorous commerson and Scomberomorous guttatus (p<0.05) and the lowest concentration was record in Pampus argenteus (p<0.05).Keywords: Persian Gulf, heavy metals, Hormoz strait, Scomberomorous guttatus, Scomberomorous commerson, Pampus argenteus
Procedia PDF Downloads 6669170 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation
Authors: Md. S. Ansari, S. S. Motsa
Abstract:
In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation
Procedia PDF Downloads 3779169 3D Medical Printing the Key Component in Future of Medical Applications
Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt
Abstract:
There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants
Procedia PDF Downloads 3049168 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate
Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib
Abstract:
In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer
Procedia PDF Downloads 457