Search results for: biological capsules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2381

Search results for: biological capsules

41 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile

Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa

Abstract:

Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.

Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha

Procedia PDF Downloads 203
40 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach

Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira

Abstract:

Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.

Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers

Procedia PDF Downloads 159
39 Encapsulated Bioflavonoids: Nanotechnology Driven Food Waste Utilization

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits fall into the category of those commercially grown fruits that constitute an excellent repository of phytochemicals with health-promoting properties. Fruits belonging to the citrus family, when processed by industries, produce tons of agriculture by-products in the form of peels, pulp, and seeds, which normally have no further usage and are commonly discarded. In spite of this, such residues are of paramount importance due to their richness in valuable compounds; therefore, agro-waste is considered a valuable bioresource for various purposes in the food sector. A range of biological properties, including anti-oxidative, anti-cancerous, anti-inflammatory, anti-allergenicity, and anti-aging activity, have been reported for these bioactive compounds. Taking advantage of these inexpensive residual sources requires special attention to extract bioactive compounds. Mandarin (Citrus nobilis X Citrus deliciosa) is a potential source of bioflavonoids with antioxidant properties, and it is increasingly regarded as a functional food. Despite these benefits, flavonoids suffer from a barrier of pre-systemic metabolism in gastric fluid, which impedes their effectiveness. Therefore, colloidal delivery systems can completely overcome the barrier in question. This study involved the extraction and identification of key flavonoids from mandarin biomass. Using a green chemistry approach, supercritical fluid extraction at 330 bar, temperature 40C, and co-solvent 10% ethanol was employed for extraction, and the identification of flavonoids was made by mass spectrometry. As flavonoids are concerned with a limitation, the obtained extract was encapsulated in polylactic-co-glycolic acid (PLGA) matrix using a solvent evaporation method. Additionally, the antioxidant potential was evaluated by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. A release pattern of flavonoids was observed over time using simulated gastrointestinal fluids. From the results, it was observed that the total flavonoids extracted from the mandarin biomass were estimated to be 47.3 ±1.06 mg/ml rutin equivalents as total flavonoids. In the extract, significantly, polymethoxyflavones (PMFs), tangeretin and nobiletin were identified, followed by hesperetin and naringin. The designed flavonoid-PLGA nanoparticles exhibited a particle size between 200-250nm. In addition, the bioengineered nanoparticles had a high entrapment efficiency of nearly 80.0% and maintained stability for more than a year. Flavonoid nanoparticles showed excellent antioxidant activity with an IC50 of 0.55μg/ml. Morphological studies revealed the smooth and spherical shape of nanoparticles as visualized by Field emission scanning electron microscopy (FE-SEM). Simulated gastrointestinal studies of free extract and nanoencapsulation revealed the degradation of nearly half of the flavonoids under harsh acidic conditions in the case of free extract. After encapsulation, flavonoids exhibited sustained release properties, suggesting that polymeric encapsulates are efficient carriers of flavonoids. Thus, such technology-driven and biomass-derived products form the basis for their use in the development of functional foods with improved therapeutic potential and antioxidant properties. As a result, citrus processing waste can be considered a new resource that has high value and can be used for promoting its utilization.

Keywords: citrus, agrowaste, flavonoids, nanoparticles

Procedia PDF Downloads 135
38 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance

Authors: R. Di Lorenzo, S. Laneri, A. Sacchi

Abstract:

Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.

Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis

Procedia PDF Downloads 129
37 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi

Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev

Abstract:

Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).

Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy

Procedia PDF Downloads 327
36 Phytochemical Analysis and in vitro Biological Activities of an Ethyl Acetate Extract from the Peel of Punica granatum L. var. Dente di Cavallo

Authors: Silvia Di Giacomo, Marcello Locatelli, Simone Carradori, Francesco Cacciagrano, Chiara Toniolo, Gabriela Mazzanti, Luisa Mannina, Stefania Cesa, Antonella Di Sotto

Abstract:

Hyperglycemia represents the main pathogenic factor in the development of diabetes complications and has been found associated with mitochondrial dysfunction and oxidative stress, which in turn increase cell dysfunction. Therefore, counteract oxidative species appears to be a suitable strategy for preventing the hyperglycemia-induce cell damage and support the pharmacotherapy of diabetes and metabolic diseases. Antidiabetic potential of many food sources has been linked to the presence of polyphenolic metabolites, particularly flavonoids such as quercetin and its glycosylated form rutin. In line with this evidence, in the present study, we assayed the potential anti-hyperglycemic activity of an ethyl acetate extract from the peel of Punica granatum L. var. Dente di Cavallo (PGE), a fruit well known to traditional medicine for the beneficial properties of its edible juice. The effect of the extract on the glucidic metabolism has been evaluated by assessing its ability to inhibit α-amylase and α-glucosidase, two digestive enzymes responsible for the hydrolysis of dietary carbohydrates: their inhibition can delay the carbohydrate digestion and reduce glucose absorption, thus representing an important strategy for the management of hyperglycemia. Also, the PGE ability to block the release of advanced glycated end-products (AGEs), whose accumulation is known to be responsible for diabetic vascular complications, was studied. The iron-reducing and chelating activities, which are the primary mechanisms by which AGE inhibitors stop their metal-catalyzed formation, were evaluated as possible antioxidant mechanisms. At last, the phenolic content of PGE was characterized by chromatographic and spectrophotometric methods. Our results displayed the ability of PGE to inhibit α-amylase enzyme with a similar potency to the positive control: the IC₅₀ values were 52.2 (CL 27.7 - 101.2) µg/ml and 35.6 (CL 22.8 - 55.5) µg/ml for acarbose and PGE, respectively. PGE also inhibited the α-glucosidase enzyme with about a 25 higher potency than the positive controls of acarbose and quercetin. Furthermore, the extract exhibited ferrous and ferric ion chelating ability, with a maximum effect of 82.1% and 80.6% at a concentration of 250 µg/ml respectively, and reducing properties, reaching the maximum effect of 80.5% at a concentration of 10 µg/ml. At last, PGE was found able to inhibit the AGE production (maximum inhibition of 82.2% at the concentration of 1000 µg/ml), although with lower potency with respect to the positive control rutin. The phytochemical analysis of PGE displayed the presence of high levels of total polyphenols, tannins, and flavonoids, among which ellagic acid, gallic acid and catechin were identified. Altogether these data highlight the ability of PGE to control the carbohydrate metabolism at different levels, both by inhibiting the metabolic enzymes and by affecting the AGE formation likely by chelating mechanisms. It is also noteworthy that peel from pomegranate, although being a waste of juice production, can be reviewed as a nutraceutical source. In conclusion, present results suggest the possible role of PGE as a remedy for preventing hyperglycemia complications and encourage further in vivo studies.

Keywords: anti-hyperglycemic activity, antioxidant properties, nutraceuticals, polyphenols, pomegranate

Procedia PDF Downloads 187
35 Gene Cloning and Expression of Azoreductases from Azo-Degraders Lysinibacillus macrolides and Bacillus coagulans Isolated from Egyptian Industrial Wastewater

Authors: Omaima A. Sharaf, Wafaa M. Abd El-Rahim, Hassan Moawad, Michael J. Sadowsky

Abstract:

Textile industry is one of the important industries in the worldwide. It is known that the eco-friendly industrial and agricultural activities are significant for socio-economic stability of all countries. The absence of appropriate industrial waste water treatments is essential barrier for sustainable development in food and agricultural sectors especially in developing country like Egypt. Thus, the development of enzymatic bioremediation technology for textile dye removal will enhance the collaboration between scientists who develop the technology and industry where this technology will be implemented towards the safe disposal of the textile dye wastes. Highly efficient microorganisms are of most importance in developing and using highly effective biological treatment processes. Bacterial degradation of azo dyes is generally initiated by an enzymatic step that involves cleavage of azo linkages, usually with the aid of an azoreductase as electron donor. Thus, expanding the spectrum of microorganisms with high enzymatic activities as azoreductases and discovering novel azo-dye degrading enzymes, with enhanced stability and superior catalytic properties, are necessary for many environmental and industrial applications. Consequently, the use of molecular tools has become increasingly integrated into the understanding of enzyme properties and characterization. Researchers have utilized a gene cloning and expression methods as a tool to produce recombinant protein for decolorizing dyes more efficiently. Thus, presumptive evidence for the presence of genes encoding azoreductases in the genomes of selected local, and most potent azo-degrading strains were obtained by using specific oligonucleotides primers. These potent strains have been isolated from textile industrial wastewater in Egypt and identified using 16S rRNA sequence analysis as 'Lysinibacillus macrolidesB8, Brevibacillus parabrevisB11, Bacillus coagulansB7, and B. cereusB5'. PCR products of two full length genes designated as (AZO1;621bp and AZO2;534bp) were detected. BLASTx results indicated that AZO1 gene was corresponding to predicted azoreductase from of Bacillus sp. ABP14, complete genome, multispecies azoreductase [Bacillus], It was submitted to the gene bank by an accession no., BankIt2085371 AZO1 MG923210 (621bp; 207 amino acids). AZO1 was generated from the DNA of our identified strains Lysinibacillus macrolidesB8. On the other hand, AZO2 gene was corresponding to a predicted azoreductase from Bacillus cereus strain S2-8. Gene bank accession no. was BankIt2085839 AZO2 MG932081 (534bp;178 amino acids) and it was amplified from our Bacillus coagulansB7. Both genes were successfully cloned into pCR2.1TOPO (Invitrogen) and in pET28b+ vectors, then they transformed into E. coli DH5α and BL21(DE3) cells for heterologous expression studies. Our recombinant azoreductases (AZO1&AZO2) exhibited potential enzyme activity and efficiently decolorized an azo dye (Direct violet). They exhibited pH stability between 6 and 8 with optimum temperature up to 60°C and 37 °C after induction by 1mM and 1.5mM IPTG, for both AZO1 &AZO2, respectively. These results suggested that further optimization and purification of these recombinant proteins by using different heterologous expression systems will give great potential for the sustainable utilization of these recombinant enzymes in several industrial applications especially in wastewater treatments.

Keywords: azoreductases, decolorization, enzyme activity, gene cloning and expression

Procedia PDF Downloads 133
34 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 71
33 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 239
32 The Potential of Rhizospheric Bacteria for Mycotoxigenic Fungi Suppression

Authors: Vanja Vlajkov, Ivana PajčIn, Mila Grahovac, Marta Loc, Dragana Budakov, Jovana Grahovac

Abstract:

The rhizosphere soil refers to the plant roots' dynamic environment characterized by their inhabitants' high biological activity. Rhizospheric bacteria are recognized as effective biocontrol agents and considered cardinal in alternative strategies for securing ecological plant diseases management. The need to suppress fungal pathogens is an urgent task, not only because of the direct economic losses caused by infection but also due to their ability to produce mycotoxins with harmful effects on human health. Aspergillus and Fusarium species are well-known producers of toxigenic metabolites with a high capacity to colonize crops and enter the food chain. The bacteria belonging to the Bacillus genus has been conceded as a plant beneficial species in agricultural practice and identified as plant growth-promoting rhizobacteria (PGPR). Besides incontestable potential, the full commercialization of microbial biopesticides is in the preliminary phase. Thus, there is a constant need for estimating the suitability of novel strains to be used as a central point of viable bioprocess leading to market-ready product development. In the present study, 76 potential producing strains were isolated from the rhizosphere soil, sampled from different localities in the Autonomous Province of Vojvodina, Republic of Serbia. The selective isolation process of strains started by resuspending 1 g of soil samples in 9 ml of saline and incubating at 28° C for 15 minutes at 150 rpm. After homogenization, thermal treatment at 100° C for 7 minutes was performed. Dilution series (10-1-10-3) were prepared, and 500 µl of each was inoculated on nutrient agar plates and incubated at 28° C for 48 h. The pure cultures of morphologically different strains indicating belonging to the Bacillus genus were obtained by the spread-plate technique. The cultivation of the isolated strains was carried out in an Erlenmeyer flask for 96 h, at 28 °C, 170 rpm. The antagonistic activity screening included two phytopathogenic fungi as test microorganisms: Aspergillus sp. and Fusarium sp. The mycelial growth inhibition was estimated based on the antimicrobial activity testing of cultivation broth by the diffusion method. For the Aspergillus sp., the highest antifungal activity was recorded for the isolates Kro-4a and Mah-1a. In contrast, for the Fusarium sp., following 15 isolates exhibited the highest antagonistic effect Par-1, Par-2, Par-3, Par-4, Kup-4, Paš-1b, Pap-3, Kro-2, Kro-3a, Kro-3b, Kra-1a, Kra-1b, Šar-1, Šar-2b and Šar-4. One-way ANOVA was performed to determine the antagonists' effect statistical significance on inhibition zone diameter. Duncan's multiple range test was conducted to define homogenous groups of antagonists with the same level of statistical significance regarding their effect on antimicrobial activity of the tested cultivation broth against tested pathogens. The study results have pointed out the significant in vitro potential of the isolated strains to be used as biocontrol agents for the suppression of the tested mycotoxigenic fungi. Further research should include the identification and detailed characterization of the most promising isolates and mode of action of the selected strains as biocontrol agents. The following research should also involve bioprocess optimization steps to fully reach the selected strains' potential as microbial biopesticides and design cost-effective biotechnological production.

Keywords: Bacillus, biocontrol, bioprocess, mycotoxigenic fungi

Procedia PDF Downloads 202
31 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 78
30 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 169
29 Biophilic Design Strategies: Four Case-Studies from Northern Europe

Authors: Carmen García Sánchez

Abstract:

The UN's 17 Sustainable Development Goals – specifically the nº 3 and nº 11- urgently call for new architectural design solutions at different design scales to increase human contact with nature in the health and wellbeing promotion of primarily urban communities. The discipline of Interior Design offers an important alternative to large-scale nature-inclusive actions which are not always possible due to space limitations. These circumstances provide an immense opportunity to integrate biophilic design, a complex emerging and under-developed approach that pursues sustainable design strategies for increasing the human-nature connection through the experience of the built environment. Biophilic design explores the diverse ways humans are inherently inclined to affiliate with nature, attach meaning to and derive benefit from the natural world. It represents a biological understanding of architecture which categorization is still in progress. The internationally renowned Danish domestic architecture built in the 1950´s and early 1960´s - a golden age of Danish modern architecture - left a leading legacy that has greatly influenced the domestic sphere and has further led the world in terms of good design and welfare. This study examines how four existing post-war domestic buildings establish a dialogue with nature and her variations over time. The case-studies unveil both memorable and unique biophilic resources through sophisticated and original design expressions, where transformative processes connect the users to the natural setting and reflect fundamental ways in which they attach meaning to the place. In addition, fascinating analogies in terms of this nature interaction with particular traditional Japanese architecture inform the research. They embody prevailing lessons for our time today. The research methodology is based on a thorough literature review combined with a phenomenological analysis into how these case-studies contribute to the connection between humans and nature, after conducting fieldwork throughout varying seasons to document understanding in nature transformations multi-sensory perception (via sight, touch, sound, smell, time and movement) as a core research strategy. The cases´ most outstanding features have been studied attending the following key parameters: 1. Space: 1.1. Relationships (itineraries); 1.2. Measures/scale; 2. Context: Context: Landscape reading in different weather/seasonal conditions; 3. Tectonic: 3.1. Constructive joints, elements assembly; 3.2. Structural order; 4. Materiality: 4.1. Finishes, 4.2. Colors; 4.3. Tactile qualities; 5. Daylight interplay. Departing from an artistic-scientific exploration this groundbreaking study provides sustainable practical design strategies, perspectives, and inspiration to boost humans´ contact with nature through the experience of the interior built environment. Some strategies are associated with access to outdoor space or require ample space, while others can thrive in a dense urban context without direct access to the natural environment. The objective is not only to produce knowledge, but to phase in biophilic design in the built environment, expanding its theory and practice into a new dimension. Its long-term vision is to efficiently enhance the health and well-being of urban communities through daily interaction with Nature.

Keywords: sustainability, biophilic design, architectural design, interior design, nature, Danish architecture, Japanese architecture

Procedia PDF Downloads 109
28 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017

Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella

Abstract:

Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).

Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration

Procedia PDF Downloads 218
27 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 184
26 Evaluation of Antimicrobial Properties of Lactic Acid Bacteria of Enterococcus Genus

Authors: Kristina Karapetyan, Flora Tkhruni, Tsovinar Balabekyan, Arevik Israyelyan, Tatyana Khachatryan

Abstract:

The ability of the lactic acid bacteria (LAB) to prevent and cure a variety of diseases, their protective role against infections and colonization of pathogenic microorganisms in the digestive tract, has lead to the coining of the term probiotics or pro-life. LAB inhibiting the growth of pathogenic and food spoilage microorganisms, maintaining the nutritive quality and improving the shelf life of foods. They have also been used as flavor and texture producers. Enterococcus strains have been used for treatment of diseases such as diarrhea or antibiotic associated diarrhea, inflammatory pathologies that affect colon such as irritable bowel syndrome, or immune regulation, diarrhea caused by antibiotic treatments. The obtaining and investigation of biological properties of proteinoceous antibiotics, on the basis of probiotic LAB shown, that bacteriocins, metabiotics, and peptides of LAB represent bactericides have a broad range of activity and are excellent candidates for development of new prophylactic and therapeutic substances to complement or replace conventional antibiotics. The genotyping by 16S rRNA sequencing for LAB were used. Cell free culture broth (CFC) broth was purified by the Gel filtration method on the Sephadex Superfine G 25 resin. Antimicrobial activity was determined by spot-on-lawn method and expressed in arbitrary units (AU/ml). The diversity of multidrug-resistance (MDR) of pathogenic strains to antibiotics, most widely used for treatment of human diseases in the Republics of Armenia and Nagorno Karabakh were examined. It was shown, that difference of resistance of pathogens to antibiotics depends on their isolation sources. The influences of partially purified antimicrobial preparations (AMP), obtained from the different strains of Enterococcus genus on the growth of MDR pathogenic bacteria were investigated. It was shown, that bacteriocin containing partially purified preparations, obtained from different strains of Enterococcus faecium and durans species, possess bactericidal or bacteriostatic activity against antibiotic resistant intestinal, spoilage and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus, E. coli, and Salmonella. Endemic strains of LAB, isolated from Matsoni made from donkey, buffalo and goat milk, shown broad spectrum of activity against food spoiling microorganisms, moulds and fungi, such as Salmonella sp., Esherichia coli, Aspergillus and Penicillium species. Highest activity against MDR pathogens shown bacteria, isolated from goat milk products. High stability of the investigated strains of the genus Enerococcus, isolated from samples of matsun from different regions of Nagorno-Karabakh (NKR) to the antibiotics was shown. The obtained data show high stability of the investigated different strains of the genus Enerococcus. The high genetic diversity in Enterococcus group suggests adaptations for specific mutations in different environments. Thus, endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms isolated from different sources and belong to different taxonomic group. Prospect of the use of certain antimicrobial preparations against pathogenic strains is obvious. These AMP can be applied for long term use against different etiology antibiotic resistant pathogens for prevention or treatment of infectional diseases as an alternative to antibiotics.

Keywords: antimicrobial biopreparation, endemic lactic acid bacteria, intra-species diversity, multidrug resistance of pathogens

Procedia PDF Downloads 313
25 Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy

Authors: Charles Shang, Salina Ramirez, Stephen Shang, Maria Estrada, Timothy R. Williams

Abstract:

Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy.

Keywords: prostate salvage radiotherapy, proton therapy, biological radiation tolerance, radiobiology of organs

Procedia PDF Downloads 23
24 A Case Study of Brownfield Revitalization in Taiwan

Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo

Abstract:

In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.

Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management

Procedia PDF Downloads 189
23 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection

Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi

Abstract:

The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).

Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora

Procedia PDF Downloads 105
22 Immunostimulatory Response of Supplement Feed in Fish against Aeromonas hydrophila

Authors: Shikha Rani, Neeta Sehgal, Vipin Kumar Verma, Om Prakash

Abstract:

Introduction: Fish is an important protein source for humans and has great economic value. Fish cultures are affected due to various anthropogenic activities that lead to bacterial and viral infections. Aeromonas hydrophila is a fish pathogenic bacterium that causes several aquaculture outbreaks throughout the world and leads to huge mortalities. In this study, plants of no commercial value were used to investigate their immunostimulatory, antioxidant, anti-inflammatory, anti-bacterial, and disease resistance potential in fish against Aeromonas hydrophila, through fish feed fortification. Methods: The plant was dried at room temperature in the shade, dissolved in methanol, and analysed for biological compounds through GC-MS/MS. DPPH, FRAP, Phenolic, and flavonoids were estimated following standardized protocols. In silico molecular docking was also performed to validate its broad-spectrum activities based on binding affinity with specific proteins. Fish were divided into four groups (n=6; total 30 in a group): Group 1, non-challenged fish (fed on a non-supplemented diet); Group 2, fish challenged with bacteria (fed on a non-supplemented diet); Group 3 and 4, fish challenged with bacteria (A. hydrophila) and fed on plant supplemented feed at 2.5% and 5%. Blood was collected from the fish on 0, 7th, 14th, 21st, and 28th days. Serum was separated for glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase assay (ALP), lysozyme activity assay, superoxide dismutase assay (SOD), lipid peroxidation assay (LPO) and molecular parameters (including cytokine levels) were estimated through ELISA. The phagocytic activity of macrophages from the spleen and head kidney, along with quantitative analysis of immune-related genes, were analysed in different tissue samples. The digestive enzymes (Pepsin, Trypsin, and Chymotrypsin) were also measured to evaluate the effect of plant-supplemented feed on freshwater fish. Results and Discussion: GC-MS/MS analysis of a methanolic extract of plant validated the presence of key compounds having antioxidant, anti-inflammatory, anti-bacterial, anti-inflammatory, and immunomodulatory activities along with disease resistance properties. From biochemical investigations like ABTS, DPPH, and FRAP, the amount of total flavonoids, phenols, and promising binding affinities towards different proteins in molecular docking analysis helped us to realize the potential of this plant that can be used for investigation in the supplemented feed of fish. Measurement liver function tests, ALPs, oxidation-antioxidant enzyme concentrations, and immunoglobulin concentrations in the experimental groups (3 and 4) showed significant improvement as compared to the positive control group. The histopathological evaluation of the liver, spleen, and head kidney supports the biochemical findings. The isolated macrophages from the group fed on supplemented feed showed a higher percentage of phagocytosis and a phagocytic index, indicating an enhanced cell-mediated immune response. Significant improvements in digestive enzymes were also observed in fish fed on supplemented feed, even after weekly challenges with bacteria. Hence, the plant-fortified feed can be recommended as a regular feed to enhance fish immunity and disease resistance against the Aeromonas hydrophila infection after confirmation from the field trial.

Keywords: immunostimulation, antipathogen, plant fortified feed, macrophages, GC-MS/MS, in silico molecular docking

Procedia PDF Downloads 88
21 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 152
20 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops

Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta

Abstract:

Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.

Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing

Procedia PDF Downloads 330
19 Development of Anti-Fouling Surface Features Bioinspired by the Patterned Micro-Textures of the Scophthalmus rhombus (Brill)

Authors: Ivan Maguire, Alan Barrett, Alex Forte, Sandra Kwiatkowska, Rohit Mishra, Jens Ducrèe, Fiona Regan

Abstract:

Biofouling is defined as the gradual accumulation of Biomimetics refers to the use and imitation of principles copied from nature. Biomimetics has found interest across many commercial disciplines. Among many biological objects and their functions, aquatic animals deserve a special attention due to their antimicrobial capabilities resulting from chemical composition, surface topography or other behavioural defences, which can be used as an inspiration for antifouling technology. Marine biofouling has detrimental effects on seagoing vessels, both commercial and leisure, as well as on oceanographic sensors, offshore drilling rigs, and aquaculture installations. Sensor optics, membranes, housings and platforms can become fouled leading to problems with sensor performance and data integrity. While many anti-fouling solutions are currently being investigated as a cost-cutting measure, biofouling settlement may also be prevented by creating a surface that does not satisfy the settlement conditions. Brill (Scophthalmus rhombus) is a small flatfish occurring in marine waters of Mediterranean as well as Norway and Iceland. It inhabits sandy and muddy coastal waters from 5 to 80 meters. Its skin colour changes depending on environment, but generally is brownish with light and dark freckles, with creamy underside. Brill is oval in shape and its flesh is white. The aim of this study is to translate the unique micro-topography of the brill scale, to design marine inspired biomimetic surface coating and test it against a typical fouling organism. Following extensive study of scale topography of the brill fish (Scophthalmus rhombus) and the settlement behaviour of the diatom species Psammodictyon sp. via SEM, two state-of-the-art antifouling surface solutions were designed and investigated; A brill fish scale bioinspired surface pattern platform (BFD), and generic and uniformly-arrayed, circular micropillar platform (MPD), with offsets based on diatom species settlement behaviour. The BFD approach consists of different ~5 μm by ~90 μm Brill-replica patterns, grown to a 5 μm height, in a linear array pattern. The MPD approach utilises hexagonal-packed cylindrical pillars 10.6 μm in diameter, grown to a height of 5 μm, with vertical offset of 15 μm and horizontal offset of 26.6 μm. Photolithography was employed for microstructure growth, with a polydimethylsiloxane (PDMS) chip-based used as a testbed for diatom adhesion on both platforms. Settlement and adhesion tests were performed using this PDMS microfluidic chip through subjugation to centrifugal force via an in-house developed ‘spin-stand’ which features a motor, in combination with a high-resolution camera, for real-time observing diatom release from PDMS material. Diatom adhesion strength can therefore be determined based on the centrifugal force generated at varying rotational speeds. It is hoped that both the replica and bio-inspired solutions will give comparable anti-fouling results to these synthetic surfaces, whilst also assisting in determining whether anti-fouling solutions should predominantly be investigating either fully bioreplica-based, or a bioinspired, synthetically-based design.

Keywords: anti-fouling applications, bio-inspired microstructures, centrifugal microfluidics, surface modification

Procedia PDF Downloads 320
18 Suicidal Attempts as a Reason for Emergency Medical Teams’ Call-Outs Based on Examples of Ambulance Service in Siedlce, Poland

Authors: Dawid Jakimiuk, Krzysztof Mitura, Leszek Szpakowski, Sławomir Pilip, Daniel Celiński

Abstract:

The Emergency Medical Teams (EMS) of the Ambulance Service in Siedlce serve the population living in the Mazowieckie Voivodeship (the area of eastern Poland with approximately 550,000 inhabitants). They provide health services at the pre-hospital stage to all life-threatening patients. The analysis covered the interventions of emergency medical teams in cases of suicide attempts that occurred in the years 2015-2018. The study was retrospective. The data was obtained on the basis of digital medical records of completed call-outs. When defining the disease entity, the International Statistical Classification of Diseases and Health Problems ICD-10 prepared by WHO was used. The relationship between selected disease entities and the area of EMT intervention, the patient's sex and age, and the time of occurrence of the event were investigated. Non-urban area was defined as the area inhabited by a population below 10,000 residents. Statistical analysis was performed using Pearson's Chi ^ 2 test and presenting the percentage of cases in the study group. Of all the suicide attempts, drug abuse cases were the most frequent, including: X60 (Intentional self-poisoning by and exposure to nonopioid analgesics, antipyretics and antirheumatics); X61 (Intentional self-poisoning by and exposure to antiepileptic, sedative-hypnotic, antiparkinsonian and psychotropic drugs, not elsewhere classified); X62 (Intentional self-poisoning by and exposure to narcotics and psycholeptics [hallucinogens], not elsewhere classified); X63 (Intentional self-poisoning by and exposure to other drugs acting on the autonomic nervous system); X64 (Intentional self-poisoning by and exposure to other and unspecified drugs, medicaments and biological substance) oraz X70 (Intentional self-harm by hanging, strangulation and suffocation). In total, they accounted for 69.4% of all interventions to suicide attempts in the studied period. Statistical analysis shows significant differences (χ2 = 39.30239, p <0.0001, n = 561) between the area of EMT intervention and the type of suicide attempt. In non-urban areas, a higher percentage of X70 diagnoses was recorded (55.67%), while in urban areas, X60-X64 (72.53%). In non-urban areas, a higher proportion of patients attempting suicide was observed compared to patients living in urban areas. For X70 and X60 - X64 in total, the incidence rates in non-urban areas were 80.8% and 56%, respectively. Significant differences were found (χ2 = 119.3304, p <0.0001, n = 561) depending on the method of attempting suicide in relation to the patient's sex. The percentage of women diagnosed with X60-X64 versus X70 was 87.50%, which was the largest number of patients (n = 154) as compared to men. In the case of X70 in relation to X60-X64, the percentage of men was 62.08%, which was the largest number of patients (n = 239) as compared to women (n = 22). In the case of X70, the percentage of men compared to women was as high as 92%. Significant differences were observed (χ2 = 14.94848, p <0.01058) between the hour of EMT intervention and the type of suicide attempt. The highest percentage of X70 occurred between 04:01 - 08:00 (64.44%), while X60-X64 between 00:01 - 04:00 (70.45%). The largest number of cases of all tested suicide attempts was recorded between 16:01 - 20:00 for X70 (n = 62), X60 - X64 (n = 82), respectively. The highest percentage of patients undertaking all suicide attempts studied at work was observed in the age range of 18-30 (31.5%), while the lowest was in the age group over 60 years of age. (11%). There was no significant correlation between the day of the week or individual months of the year and the type of suicide attempt - respectively (χ2 = 6.281729, p <0.39238, n = 561) and (χ2 = 3.348913, p <0.9857, n = 561). There were also no significant differences in the incidence of suicide attempts for each year in the study period (χ2 = 3.348913, p <0.9857 n = 561). The obtained results suggest the necessity to undertake preventive measures in order to minimize the number of suicide attempts. Such activities should be directed especially at young patients living in non-urban areas.

Keywords: emergency med, emergency medical team, attempted suicide, pre-hospital

Procedia PDF Downloads 94
17 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 157
16 [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors

Authors: Sajeli A. Begum, Ameer Basha, Kirti Hira, Rukaiyya Khan

Abstract:

Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases.

Keywords: cyclic dipeptides, cytokines, Fusarium moniliforme, Pseudomonas, TNF-alpha

Procedia PDF Downloads 213
15 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds

Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee

Abstract:

Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.

Keywords: histo-pathology, non invasive imaging, OCT, wound healing

Procedia PDF Downloads 280
14 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology

Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco

Abstract:

Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.

Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning

Procedia PDF Downloads 77
13 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 84
12 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia

Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan

Abstract:

Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.

Keywords: multiplex polymerase chain reaction, toxic shock syndrome, Staphylococcus aureus, nosocomial infections

Procedia PDF Downloads 342