Search results for: specific learning disability
12289 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 14312288 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps
Authors: Robin Ferguson
Abstract:
The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces
Procedia PDF Downloads 8112287 Evaluating the Performance of Offensive Lineman in the National Football League
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
How does one objectively measure the performance of an individual offensive lineman in the NFL? The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.Keywords: offensive lineman, player performance, NFL, machine learning
Procedia PDF Downloads 14412286 Interactive Teaching and Learning Resources for Bilingual Education
Authors: Sarolta Lipóczi, Ildikó Szabó
Abstract:
The use of ICT in European Schools has increased over the last decade but there is still room for improvement. Also interactive technology is often used below its technical and pedagogical potentials. The pedagogical potential of interactive technology in classrooms has not yet reached classrooms in different countries and in a substantial way. To develop these materials cooperation between educational researchers and teachers from different backgrounds is necessary. INTACT project brings together experts from science education, mathematics education, social science education and foreign language education – with a focus on bilingual education – and teachers in secondary and primary schools to develop a variety of pedagogically qualitative interactive teaching and learning resources. Because of the backgrounds of the consortium members INTACT project focuses on the areas of science, mathematics and social sciences. To combine these two features (science/math and foreign language) the project focuses on bilingual education. A big issue supported by ‘interactiveness’ is social and collaborative learning. The easy way to communicate and collaborate offered by web 2.0 tools, mobile devices connected to the learning material allows students to work and learn together. There will be a wide range of possibilities for school co-operations at regional, national and also international level that allows students to communicate and cooperate with other students beyond the classroom boarders while using these interactive teaching materials. Opening up the learning scenario enhance the social, civic and cultural competences of the students by advocating their social skills and improving their cultural appreciation for other nations in Europe. To enable teachers to use the materials in indented ways descriptions of successful learning scenarios (i.e. using design patterns) will be provided as well. These materials and description will be made available to teachers by teacher trainings, teacher journals, booklets and online materials. The resources can also be used in different settings including the use of a projector and a touchpad or other technical interactive devices for the input i.e. mobile phones. Kecskemét College as a partner of INTACT project has developed two teaching and learning resources in the area of foreign language teaching. This article introduces these resources as well.Keywords: bilingual educational settings, international cooperation, interactive teaching and learning resources, work across culture
Procedia PDF Downloads 39512285 Exploring the Effect of Nursing Students’ Self-Directed Learning and Technology Acceptance through the Use of Digital Game-Based Learning in Medical Terminology Course
Authors: Hsin-Yu Lee, Ming-Zhong Li, Wen-Hsi Chiu, Su-Fen Cheng, Shwu-Wen Lin
Abstract:
Background: The use of medical terminology is essential to professional nurses on clinical practice. However, most nursing students consider traditional lecture-based teaching of medical terminology as boring and overly conceptual and lack motivation to learn. It is thus an issue to be discussed on how to enhance nursing students’ self-directed learning and improve learning outcomes of medical terminology. Digital game-based learning is a learner-centered way of learning. Past literature showed that the most common game-based learning for language education has been immersive games and teaching games. Thus, this study selected role-playing games (RPG) and digital puzzle games for observation and comparison. It is interesting to explore whether digital game-based learning has positive impact on nursing students’ learning of medical terminology and whether students can adapt well on this type of learning. Results can be used to provide references for institutes and teachers on teaching medical terminology. These instructions give you guidelines for preparing papers for the conference. Use this document as a template if you are using Microsoft Word. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at WASET. Define all symbols used in the abstract. Do not cite references in the abstract. Do not delete the blank line immediately above the abstract; it sets the footnote at the bottom of this column. Page margins are 1,78 cm top and down; 1,65 cm left and right. Each column width is 8,89 cm and the separation between the columns is 0,51 cm. Objective: The purpose of this research is to explore respectively the impact of RPG and puzzle game on nursing students’ self-directed learning and technology acceptance. The study further discusses whether different game types bring about different influences on students’ self-directed learning and technology acceptance. Methods: A quasi-experimental design was adopted in this study so that repeated measures between two groups could be conveniently conducted. 103 nursing students from a nursing college in Northern Taiwan participated in the study. For three weeks of experiment, the experiment group (n=52) received “traditional teaching + RPG” while the control group (n=51) received “traditional teaching + puzzle games”. Results: 1. On self-directed learning: For each game type, there were significant differences for the delayed tests of both groups as compared to the pre and post-tests of each group. However, there were no significant differences between the two game types. 2. On technology acceptance: For the experiment group, after the intervention of RPG, there were no significant differences concerning technology acceptance. For the control group, after the intervention of puzzle games, there were significant differences regarding technology acceptance. Pearson-correlation coefficient and path analysis conducted on the results of the two groups revealed that the dimension were highly correlated and reached statistical significance. Yet, the comparison of technology acceptance between the two game types did not reach statistical significance. Conclusion and Recommend: This study found that through using different digital games on learning, nursing students have effectively improved their self-directed learning. Students’ technology acceptances were also high for the two different digital game types and each dimension was significantly correlated. The results of the experimental group showed that through the scenarios of RPG, students had a deeper understanding of medical terminology, which reached the ‘Understand’ dimension of Bloom’s taxonomy. The results of the control group indicated that digital puzzle games could help students memorize and review medical terminology, which reached the ‘Remember’ dimension of Bloom’s taxonomy. The findings suggest that teachers of medical terminology could use digital games to assist their teaching according to their goals on cognitive learning. Adequate use of those games could help improve students’ self-directed learning and further enhance their learning outcome on medical terminology.Keywords: digital game-based learning, medical terminology, nursing education, self-directed learning, technology acceptance model
Procedia PDF Downloads 16712284 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 22512283 Resolution of Artificial Intelligence Language Translation Technique Alongside Microsoft Office Presentation during Classroom Teaching: A Case of Kampala International University in Tanzania
Authors: Abigaba Sophia
Abstract:
Artificial intelligence (AI) has transformed the education sector by revolutionizing educational frameworks by providing new opportunities and innovative advanced platforms for language translation during the teaching and learning process. In today's education sector, the primary key to scholarly communication is language; therefore, translation between different languages becomes vital in the process of communication. KIU-T being an International University, admits students from different nations speaking different languages, and English is the official language; some students find it hard to grasp a word during teaching and learning. This paper explores the practical aspect of using artificial intelligence technologies in an advanced language translation manner during teaching and learning. The impact of this technology is reflected in the education strategies to equip students with the necessary knowledge and skills for professional activity in the best way they understand. The researcher evaluated the demand for this practice since students have to apply the knowledge they acquire in their native language to their countries in the best way they understand. The main objective is to improve student's language competence and lay a solid foundation for their future professional development. A descriptive-analytic approach was deemed best for the study to investigate the phenomena of language translation intelligence alongside Microsoft Office during the teaching and learning process. The study analysed the responses of 345 students from different academic programs. Based on the findings, the researcher recommends using the artificial intelligence language translation technique during teaching, and this requires the wisdom of human content designers and educational experts. Lecturers and students will be trained in the basic knowledge of this technique to improve the effectiveness of teaching and learning to meet the student’s needs.Keywords: artificial intelligence, language translation technique, teaching and learning process, Microsoft Office
Procedia PDF Downloads 7912282 Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language other than English
Authors: Sandra Figueiredo, Margarida Alves Martins, Carlos Silva, Cristina Simões
Abstract:
This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.Keywords: home language, immigrant students, Portuguese language, second language, writing assessment
Procedia PDF Downloads 46212281 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction
Authors: Saurabh Kumar
Abstract:
In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth
Procedia PDF Downloads 2912280 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target
Procedia PDF Downloads 14012279 Distance Learning in Vocational Mass Communication Courses during COVID-19 in Kuwait: A Media Richness Perspective of Students’ Perceptions
Authors: Husain A. Murad, Ali A. Dashti, Ali Al-Kandari
Abstract:
The outbreak of Coronavirus during the Spring semester of 2020 brought new challenges for the teaching of vocational mass communication courses at universities in Kuwait. Using the Media Richness Theory (MRT), this study examines the response of 252 university students on mass communication programs. A questionnaire regarding their perceptions and preferences concerning modes of instruction on vocational courses online, focusing on the four factors of MRT: immediacy of feedback, capacity to include personal focus, conveyance of multiple cues, and variety of language. The outcomes show that immediacy of feedback predicted all criterion variables: suitability of distance learning (DL) for teaching vocational courses, sentiments of students toward DL, perceptions of easiness of evaluation of DL coursework, and the possibility of retaking DL courses. Capacity to include personal focus was another positive predictor of the criterion variables. It predicted students’ sentiments toward DL and the possibility of retaking DL courses. The outcomes are discussed in relation to implications for using DL, as well as constructing an agenda for DL research.Keywords: distance learning, media richness theory, traditional learning, vocational media courses
Procedia PDF Downloads 7512278 Innovative Business Education Pedagogy: A Case Study of Action Learning at NITIE, Mumbai
Authors: Sudheer Dhume, T. Prasad
Abstract:
There are distinct signs of Business Education losing its sheen. It is more so in developing countries. One of the reasons is the value addition at the end of 2 year MBA program is not matching with the requirements of present times and expectations of the students. In this backdrop, Pedagogy Innovation has become prerequisite for making our MBA programs relevant and useful. This paper is the description and analysis of innovative Action Learning pedagogical approach adopted by a group of faculty members at NITIE Mumbai. It not only promotes multidisciplinary research but also enhances integration of the functional areas skillsets in the students. The paper discusses the theoretical bases of this pedagogy and evaluates the effectiveness of it vis-à-vis conventional pedagogical tools. The evaluation research using Bloom’s taxonomy framework showed that this blended method of Business Education is much superior as compared to conventional pedagogy.Keywords: action learning, blooms taxonomy, business education, innovation, pedagogy
Procedia PDF Downloads 27012277 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV
Authors: Katherine Karayianis
Abstract:
Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher
Procedia PDF Downloads 8512276 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers
Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara
Abstract:
Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.Keywords: early childhood, learning, methodologies, pedagogies
Procedia PDF Downloads 32012275 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level
Authors: Maha Awad M. Almuttairi
Abstract:
This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.Keywords: enrichment program, gifted students, metacognition skills, mobile learning
Procedia PDF Downloads 11812274 Students with Disabilities in Today's College Classrooms
Authors: Ashwini Tiwari
Abstract:
This qualitative case study examines students' perceptions of accommodations in higher education institutions. The data were collected from focus groups and one-to-one interviews with 15 students enrolled in a 4-year state university in the southern United States. The data were analyzed using a thematic analysis process. The findings suggest that students perceived that their instructors were willing to accommodate their educational needs. However, the participants expressed concerns about the lack of a formal labeling process in higher education settings, creating a barrier to receiving adequate services to gain meaningful educational experiences.Keywords: disability, accomodation, services, higher educaiton
Procedia PDF Downloads 8812273 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan
Abstract:
Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic
Procedia PDF Downloads 25412272 Learning Programming for Hearing Impaired Students via an Avatar
Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause
Abstract:
Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.Keywords: hearing-impaired students, isolation, self-esteem, learning difficulties
Procedia PDF Downloads 14512271 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 14512270 Introduction of a Model of Students' Practice in Social Work Education: Case of Republic of Srpska
Authors: Vesna Šućur-Janjetović, Andrea Rakanović Radonjić
Abstract:
Department of Social Work of the Faculty of Political Sciences, University of Banja Luka is the only School of Social Work in the Republic of Srpska (entity of Bosnia and Herzegovina). This Department has been implementing students’ practice as mandatory module since it was established in year 2000. As of 2006, the University of Banja Luka initiated the transformation of the education system in accordance with the Bologna Agreement. The Department of Social Work adopted a new Curriculum that anticipated 120 hours of Students’ practice. After ten years, a new process of changing and improving the Curriculum has been initiated, and research was conducted, in order to meet both the needs of practice and academic standards in the field of social work education. From 2006-2016 students were evaluating their practice experience under the mentor’s supervision. These evaluations were subject to the evaluation process of current Curriculum, including students practice module. Additional research was designed in order to assess the opinions of certified mentors on specific aspects of students’ practice, the needs of practice and possibilities for improving the education for social workers. Special research instruments were designed for the purpose of this research. All mentors were graduated social works working in all fields where social work services are provided (social welfare sector, health, education, non-government sector etc.). The third dimension of the research was a qualitative analysis of curriculums of Schools of Social Work in the region of Southeast Europe. This paper represents the results of the research, conclusions and consequences that led towards the improvement of Students’ practice and Curriculum of the Department of Social Work. The new Model anticipates 300 hours of Students’ practice, divided in three years of study, with different and specific learning outcomes.Keywords: curriculum, Republic of Srpska, social work education, students’ practice
Procedia PDF Downloads 27712269 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study
Authors: Barry Ardley, Abi Hunt, Nick Taylor
Abstract:
As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.Keywords: consultancy, learning, student as producer, research
Procedia PDF Downloads 7812268 Avoidance and Selectivity in the Acquisition of Arabic as a Second/Foreign Language
Authors: Abeer Heider
Abstract:
This paper explores and classifies the different kinds of avoidances that students commonly make in the acquisition of Arabic as a second/foreign language, and suggests specific strategies to help students lessen their avoidance trends in hopes of streamlining the learning process. Students most commonly use avoidance strategies in grammar, and word choice. These different types of strategies have different implications and naturally require different approaches. Thus the question remains as to the most effective way to help students improve their Arabic, and how teachers can efficiently utilize these techniques. It is hoped that this research will contribute to understand the role of avoidance in the field of the second language acquisition in general, and as a type of input. Yet some researchers also note that similarity between L1 and L2 may be problematic as well since the learner may doubt that such similarity indeed exists and consequently avoid the identical constructions or elements (Jordens, 1977; Kellermann, 1977, 1978, 1986). In an effort to resolve this issue, a case study is being conducted. The present case study attempts to provide a broader analysis of what is acquired than is usually the case, analyzing the learners ‘accomplishments in terms of three –part framework of the components of communicative competence suggested by Michele Canale: grammatical competence, sociolinguistic competence and discourse competence. The subjects of this study are 15 students’ 22th year who came to study Arabic at Qatar University of Cairo. The 15 students are in the advanced level. They were complete intermediate level in Arabic when they arrive in Qatar for the first time. The study used discourse analytic method to examine how the first language affects students’ production and output in the second language, and how and when students use avoidance methods in their learning. The study will be conducted through Fall 2015 through analyzing audio recordings that are recorded throughout the entire semester. The recordings will be around 30 clips. The students are using supplementary listening and speaking materials. The group will be tested at the end of the term to assess any measurable difference between the techniques. Questionnaires will be administered to teachers and students before and after the semester to assess any change in attitude toward avoidance and selectivity methods. Responses to these questionnaires are analyzed and discussed to assess the relative merits of the aforementioned strategies to avoidance and selectivity to further support on. Implications and recommendations for teacher training are proposed.Keywords: the second language acquisition, learning languages, selectivity, avoidance
Procedia PDF Downloads 27712267 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7312266 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 15012265 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 21512264 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 17112263 Effects of Aging on Thermal Properties of Some Improved Varieties of Cassava (Manihot Esculenta) Roots
Authors: K. O. Oriola, A. O. Raji, O. E. Akintola, O. T. Ismail
Abstract:
Thermal properties of roots of three improved cassava varieties (TME419, TMS 30572, and TMS 0326) were determined on samples harvested at 12, 15 and 18 Months After Planting (MAP) conditioned to moisture contents of 50, 55, 60, 65, 70% (wb). Thermal conductivity at 12, 15 and 18 MAP ranged 0.4770 W/m.K to 0.6052W/m.K; 0.4804 W/m.K to 0.5530 W/m.K and 0.3764 to 0.6102 W/m.K respectively, thermal diffusivity from 1.588 to 2.426 x 10-7m2/s; 1.290 to 2.010 x 10-7m2/s and 0.1692 to 4.464 x 10-7m2/s and specific heat capacity from 2.3626 to 3.8991 kJ/kg.K; 1.8110 to 3.9703 kJ/kgK and 1.7311 to 3.8830 kJ/kg.K respectively within the range of moisture content studied across the varieties. None of the samples over the ages studied showed similar or definite trend in variation with others across the moisture content. However, second order polynomial models fitted all the data. Age on the other hand had a significant effect on the three thermal properties studied for TME 419 but not on thermal conductivity of TMS30572 and specific heat capacity of TMS 0326. Information obtained will provide better insight into thermal processing of cassava roots into stable products.Keywords: thermal conductivity, thermal diffusivity, specific heat capacity, moisture content, tuber age
Procedia PDF Downloads 52012262 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear
Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira
Abstract:
This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations
Procedia PDF Downloads 6712261 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 17712260 Evaluation of Joint Contact Forces and Muscle Forces in the Subjects with Non-Specific Low Back Pain
Authors: Mohammad Taghi Karimi, Maryam Hasan Zahraee
Abstract:
Background: Low back pain (LBP) is a common health and socioeconomic problem, especially the chronic one. The joint contact force is an important parameter during walking which increases the incidence of injury and degenerative joint disease. To our best knowledge, there are not enough evidences in literature on the muscular forces and joint contact forces in subjects with low back pain. Purpose: The main hypothesis associated with this research was that joint contact force of L4/L5 of non-specific chronic low back pain subjects was the same as that of normal. Therefore, the aim of this study was to determine the joint contact force difference between non-specific chronic low back pain and normal subjects. Method: This was an experimental-comparative study. 20 normal subjects and 20 non-specific chronic low back pain patients were recruited in this study. Qualysis motion analysis system and a Kistler force plate were used to collect the motions and the force applied on the leg, respectively. OpenSimm software used to determine joint contact force and muscle forces in this study. Some parameters such as force applied on the legs (pelvis), kinematic of hip and pelvic, peaks of muscles, force of trunk musculature and joint contact force of L5/S1 were used for further analysis. Differences between mean values of all data were measured using two-sample t-test among the subjects. Results: The force produced by Semitendinosus, Biceps Femoris, and Adductor muscles were significantly different between low back pain and normal subjects. Moreover, the mean value of breaking component of the force of the knee joint increased significantly in low back pain subjects, besides a significant decrease in mean value of the vertical component of joint reaction force compared to the normal ones. Conclusions: The forces produced by the trunk and pelvic muscles, and joint contact forces differ significantly between low back pain and normal subjects. It seems that those with non-specific chronic low back pain use trunk muscles more than normal subjects to stabilize the pelvic during walking.Keywords: low back pain, joint contact force, kinetic, muscle force
Procedia PDF Downloads 238