Search results for: diagnostic accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4657

Search results for: diagnostic accuracy

2347 Evaluating and Improving Healthcare Staff Knowledge of the [NG179] NICE Guidelines on Elective Surgical Care during the COVID-19 Pandemic: A Quality Improvement Project

Authors: Stavroula Stavropoulou-Tatla, Danyal Awal, Mohammad Ayaz Hossain

Abstract:

The first wave of the COVID-19 pandemic saw several countries issue guidance postponing all non-urgent diagnostic evaluations and operations, leading to an estimated backlog of 28 million cases worldwide and over 4 million in the UK alone. In an attempt to regulate the resumption of elective surgical activity, the National Institute for Health and Care Excellence (NICE) introduced the ‘COVID-19 rapid guideline [NG179]’. This project aimed to increase healthcare staff knowledge of the aforementioned guideline to a targeted score of 100% in the disseminated questionnaire within 3 months at the Royal Free Hospital. A standardized online questionnaire was used to assess the knowledge of surgical and medical staff at baseline and following each 4-week-long Plan-Study-Do-Act (PDSA) cycle. During PDSA1, the A4 visual summary accompanying the guideline was visibly placed in all relevant clinical areas and the full guideline was distributed to the staff in charge together with a short briefing on the salient points. PDSA2 involved brief small-group teaching sessions. A total of 218 responses was collected. Mean percentage scores increased significantly from 51±19% at baseline to 81±16% after PDSA1 (t=10.32, p<0.0001) and further to 93±8% after PDSA2 (t=4.9, p<0.0001), with 54% of participants achieving a perfect score. In conclusion, the targeted distribution of guideline printouts and visual aids, combined with small-group teaching sessions, were simple and effective ways of educating healthcare staff about the new standards of elective surgical care at the time of COVID-19. This could facilitate the safe restoration of surgical activity, which is critical in order to mitigate the far-reaching consequences of surgical delays on an unprecedented scale during a time of great crisis and uncertainty.

Keywords: COVID-19, elective surgery, NICE guidelines, quality improvement

Procedia PDF Downloads 194
2346 Association of Mir-196a Expression in Esophageal Tissue with Barrett´s Esophagus and Esophageal Adenocarcinoma

Authors: Petra Borilova Linhartova, Michaela Ruckova, Sabina Sevcikova, Natalie Mlcuchova, Jan Bohm, Katerina Zukalova, Monika Vlachova, Jiri Dolina, Lumir Kunovsky, Radek Kroupa, Zdenek Pavlovsky, Zdenek Danek, Tereza Deissova, Lydie Izakovicova Holla, Ondrej Slaby, Zdenek Kala

Abstract:

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that frequently develops from Barrett's esophagus (BE), a premalignant pathologic change occurring in the lower end of the esophagus. Specific microRNAs (miRNAs), small non-coding RNAs that function as posttranscriptional regulators of gene expression, were repeatedly proved to play key roles in the pathogenesis of these diseases. This pilot study aimed to analyze four selected miRNAs in esophageal tissues from healthy controls (HC) and patients with reflux esophagitis (RE)/BE/EAC, as well as to compare expression at the site of Barrett's mucosa/adenocarcinoma and healthy esophageal tissue outside the area of the main pathology in patients with BE/EAC. In this pilot study, 22 individuals (3 HC, 8 RE, 5 BE, 6 EAC) were included and endoscopically examined. RNA was isolated from the fresh-frozen esophageal tissue (stored in the RNAlater™ Stabilization Solution −70°C) using the AllPrep DNA/RNA/miRNA Universal Kit. Subsequent RT-qPCR analysis was performed using selected TaqMan MicroRNA Assays for miR-21, miR-34a, miR-196a, miR-196b, and endogenous control (RNU44). While the expression of miR-21 in the esophageal tissue with the main pathology was decreased in BE and EAC patients in comparison to the group of HC and RE patients (p=0.01), the expression of miR-196a was increased in the BE and EAC patients (p<0.01). Correlations between those miRNAs expression in tissue and severity of diagnosis were observed (p<0.05). In addition, miR-196a was significantly more expressed at the site with the main pathology than in paired adjacent esophageal tissue in BE and EAC patients (p<0.01). In conclusion, our pilot results showed that miR-196a, which regulates the proliferation, invasion, and migration (and was previously associated with esophageal squamous cell carcinoma and marked as a potential therapeutic target), could be a diagnostic tissue biomarker for BE and EAC as well.

Keywords: microRNA, barrett´s esophagus, esophageal adenocarcinoma, biomarker

Procedia PDF Downloads 107
2345 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 657
2344 Application of the MOOD Technique to the Steady-State Euler Equations

Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère

Abstract:

The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.

Keywords: Euler equations, finite volume, MOOD, steady-state

Procedia PDF Downloads 275
2343 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter

Procedia PDF Downloads 158
2342 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor

Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui

Abstract:

This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.

Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer

Procedia PDF Downloads 729
2341 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 437
2340 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 197
2339 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
2338 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 282
2337 Exposure to Ionizing Radiation Resulting from the Chernobyl Fallout and Childhood Cardiac Arrhythmia: A Population Based Study

Authors: Geraldine Landon, Enora Clero, Jean-Rene Jourdain

Abstract:

In 2005, the Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France) launched a research program named EPICE (acronym for 'Evaluation of Pathologies potentially Induced by CaEsium') to collect scientific information on non-cancer effects possibly induced by chronic exposures to low doses of ionizing radiation with the view of addressing a question raised by several French NGOs related to health consequences of the Chernobyl nuclear accident in children. The implementation of the program was preceded by a pilot phase to ensure that the project would be feasible and determine the conditions for implementing an epidemiological study on a population of several thousand children. The EPICE program focused on childhood cardiac arrhythmias started in May 2009 for 4 years, in partnership with the Russian Bryansk Diagnostic Center. The purpose of this cross-sectional study was to determine the prevalence of cardiac arrhythmias in the Bryansk oblast (depending on the contamination of the territory and the caesium-137 whole-body burden) and to assess whether caesium-137 was or not a factor associated with the onset of cardiac arrhythmias. To address these questions, a study bringing together 18 152 children aged 2 to 18 years was initiated; each child received three medical examinations (ECG, echocardiography, and caesium-137 whole-body activity measurement) and some of them were given with a 24-hour Holter monitoring and blood tests. The findings of the study, currently submitted to an international journal justifying that no results can be given at this step, allow us to answer clearly to the issue of radiation-induced childhood arrhythmia, a subject that has been debated for many years. Our results will be certainly helpful for health professionals responsible for the monitoring of population exposed to the releases from the Fukushima Dai-ichi nuclear power plant and also useful for future comparative study in children exposed to ionizing radiation in other contexts, such as cancer radiation therapies.

Keywords: Caesium-137, cardiac arrhythmia, Chernobyl, children

Procedia PDF Downloads 244
2336 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 711
2335 Palliative Orthovoltage Radiotherapy and Subcutaneous Infusion of Carboplatin for Treatment of Appendicular Osteosarcoma in Dogs

Authors: Kathryn L. Duncan, Charles A. Kuntz, Alessandra C. Santamaria, James O. Simcock

Abstract:

Access to megavoltage radiation therapy for small animals is limited in many locations around the world. This can preclude the use of palliative radiation therapy for the treatment of appendicular osteosarcoma in dogs. The objective of this study was to retrospectively assess the adverse effects and survival times of dogs with appendicular osteosarcoma that were treated with hypofractionated orthovoltage radiation therapy and adjunctive carboplatin chemotherapy administered via a single subcutaneous infusion. Medical records were reviewed retrospectively to identify client-owned dogs with spontaneously occurring appendicular osteosarcoma that was treated with palliative orthovoltage radiation therapy and a single subcutaneous infusion of carboplatin. Data recorded included signalment, tumour location, results of diagnostic imaging, haematologic and serum biochemical analyses, adverse effects of radiation therapy and chemotherapy, and survival times. Kaplan-Meier survival analysis was performed, and log-rank analysis was used to determine the impact of specific patient variables on survival time. Twenty-three dogs were identified that met the inclusion criteria. Median survival time for dogs was 182 days. Eleven dogs had adverse haematologic effects, 3 had adverse gastrointestinal effects, 6 had adverse effects at the radiation site and 7 developed infections at the carboplatin infusion site. No statistically significant differences were identified in survival times based on sex, tumour location, development of infection, or pretreatment serum alkaline phosphatase. Median survival time and incidence of adverse effects were comparable to those previously reported in dogs undergoing palliative radiation therapy with megavoltage or cobalt radiation sources and conventional intravenous carboplatin chemotherapy. The use of orthovoltage palliative radiation therapy may be a reasonable alternative to megavoltage radiation in locations where access is limited.

Keywords: radiotherapy, veterinary oncology, chemotherapy, osteosarcoma

Procedia PDF Downloads 71
2334 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 351
2333 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.

Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate

Procedia PDF Downloads 328
2332 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter

Authors: Vahid Anari, Leila Shahmohammadi

Abstract:

Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction

Procedia PDF Downloads 65
2331 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect

Authors: Maatouk Khoukhi

Abstract:

An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.

Keywords: building insulation material, moisture content, operating temperature, thermal conductivity

Procedia PDF Downloads 319
2330 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 561
2329 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems

Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian

Abstract:

This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.

Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems

Procedia PDF Downloads 373
2328 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network

Authors: Donya Ashtiani Haghighi, Amirali Baniasadi

Abstract:

Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.

Keywords: capsule network, dropout, hyperparameter tuning, classification

Procedia PDF Downloads 76
2327 Adjustable Counter-Weight for Full Turn Rotary Systems

Authors: G. Karakaya, C. Türker, M. Anaklı

Abstract:

It is necessary to test to see if optical devices such as camera, night vision devices are working properly. Therefore, a precision biaxial rotary system (gimbal) is required for mounting Unit Under Test, UUT. The Gimbal systems can be utilized for precise positioning of the UUT; hence, optical test can be performed with high accuracy. The weight of UUT, which is placed outside the axis of rotation, causes an off-axis moment to the mounting armature. The off-axis moment can act against the direction of movement for some orientation, thus the electrical motor, which rotates the gimbal axis, has to apply higher level of torque to guide and stabilize the system. Moreover, UUT and its mounting fixture to the gimbal can be changed, which causes change in applied resistance moment to the gimbals electrical motor. In this study, a preloaded spring is added to the gimbal system for minimizing applied off axis moment with the help of four bar mechanism. Two different possible methods for preloading spring are introduced and system optimization is performed to eliminate all moment which is created by off axis weight.

Keywords: adaptive, balancing, gimbal, mechanics, spring

Procedia PDF Downloads 120
2326 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.

Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers

Procedia PDF Downloads 185
2325 Real World Cancer Pain Incidence and Treatment in Daily Hospital

Authors: Alexandru Grigorescu, Alexandra Protesanu

Abstract:

Background: Approximately 34-67 percent of cancer patients experience an episode of uncontrolled pain during the course of their disease, depending on the stage. The aim is to provide evidence-based data for pain prevalence, diagnosis and treatment recommendations on an integrative model of medical oncology and palliative care for patients with cancer diagnostic in a day hospital. Patients and method: Consultation registers and electronic records of 166 Patients (Pts) were studied from April 2022 to March 2023. Pts with pain syndrome were selected. The pain was objectified by the visual pain scale. To elucidate the causes of the pain, investigations were carried out: bone scintigraphy, CT scan, and PET-CT. The analgesic treatments were represented by weak and strong morphine, radiotherapy, and bisphosphonates. Result: During the mentioned period, 166 oncological patients (74 women and 92 men) were treated in the oncology day hospitalization service. There were 1,500 consultations, 40 of which were only for pain. The neoplastic locations were: gynecological, malignant melanoma, breast, gastric, bronchopulmonary, colorectal, liver, pancreatic, bladder, and kidney. 70 Pts presented pain syndrome. The causes of the pain were represented by bone metastases, compressive tumors, and post-surgical status. Drug treatment: Tramadol 47 Pts, of which 10 switched to a major opioid (Oxycodonum, Morphine sulfate), 20 Pts were treated with Oxycodonum as the first intention. In 5 patients ry to rotated morphine, 20 Pts received palliative radiotherapy, 10 Pts were treated with bisphosphonates. 2 Pts required neurosurgery consultation for an antalgic intervention. 5 Pts had important adverse reactions to morphine. All patients and their families were advised by a medical oncologist and psychologist for a lifestyle change. Conclusions: The prevalence of pain was similar to that described in the literature. In most cases, the pain could be managed in the day hospital. Weak and strong morphine represented the main pain therapy. Palliative radiotherapy was the second most effective therapy. Treatment with bisphosphonates was useful. Surgical interventions were rarely indicated. Discussions with patients and their families regarding the lifestyle change were important.

Keywords: cancer pain, opioids, medical oncology, palliative care

Procedia PDF Downloads 64
2324 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM

Authors: JingWei Yu, Hong Yang Yu

Abstract:

At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.

Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction

Procedia PDF Downloads 132
2323 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.

Keywords: air viscosity, design parameters, loudspeaker, optimization

Procedia PDF Downloads 511
2322 Europium Chelates as a Platform for Biosensing

Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner

Abstract:

Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.

Keywords: lanthanides, europium, chelates, biosensors

Procedia PDF Downloads 524
2321 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 364
2320 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 68
2319 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 243
2318 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures

Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel

Abstract:

Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.

Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology

Procedia PDF Downloads 352