Search results for: steel-concrete composite bridge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2855

Search results for: steel-concrete composite bridge

605 Enhancing Cooperation Between LEAs and Citizens: The INSPEC2T Approach

Authors: George Leventakis, George Kokkinis, Nikos Moustakidis, George Papalexandratos, Ioanna Vasiliadou

Abstract:

Enhancing the feeling of public safety and crime prevention are tasks customarily assigned to the Police. Police departments have, however, recognized that traditional ways of policing methods are becoming obsolete; Community Policing (CP) philosophy; however, when applied appropriately, leads to seamless collaboration between various stakeholders like the Police, NGOs and the general public and provides the opportunity to identify risks, assist in solving problems of crime, disorder, safety and crucially contribute to improving the quality of life for everyone in a community. Social Media, on the other hand, due to its high level of infiltration in modern life, constitutes a powerful mechanism which offers additional and direct communication channels to reach individuals or communities. These channels can be utilized to improve the citizens’ perception of the Police and to capture individual and community needs, when their feedback is taken into account by Law Enforcement Agencies (LEAs) in a structured and coordinated manner. This paper presents research conducted under INSPEC2T (Inspiring CitizeNS Participation for Enhanced Community PoliCing AcTions), a project funded by the European Commission’s research agenda to bridge the gap between CP as a philosophy and as an organizational strategy, capitalizing on the use of Social Media. The project aims to increase transparency, trust, police accountability, and the role of civil society. It aspires to build strong, trusting relationships between LEAs and the public, supporting two-way, contemporary communication while at the same time respecting anonymity of all affected parties. Results presented herein summarize the outcomes of four online multilingual surveys, focus group interviews, desktop research and interviews with experts in the field of CP practices. The above research activities were conducted in various EU countries aiming to capture requirements of end users from diverse backgrounds (social, cultural, legal and ethical) and determine public expectations regarding CP, community safety and crime prevention.

Keywords: community partnerships, next generation community policing, social media, public safety

Procedia PDF Downloads 346
604 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device

Authors: Jisoo Kim, Min Su Lee, Sunmook Lee

Abstract:

Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.

Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test

Procedia PDF Downloads 402
603 Preparation, Characterization, and in-Vitro Drug Release Study of Methotrexate-Loaded Hydroxyapatite-Sodium Alginate Nanocomposites

Authors: Friday G. Okibe, Edit B. Agbaji, Victor O. Ajibola, Christain C. Onoyima

Abstract:

Controlled drug delivery systems reduce dose-dependent toxicity associated with potent drugs, including anticancer drugs. In this research, hydroxyapatite (HA) and hydroxyapatite-sodium alginate nanocomposites (HASA) were successfully prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR result showed absorption peaks characteristics of pure hydroxyapatite (HA), and also confirmed the chemical interaction between hydroxyapatite and sodium alginate in the formation of the composite. Image analysis from SEM revealed nano-sized hydroxyapatite and hydroxyapatite-sodium alginate nanocomposites with irregular morphologies. Particle size increased with the formation of the nanocomposites relative to pure hydroxyapatite, with no significant change in particles morphologies. Drug loading and in-vitro drug release study were carried out using synthetic body fluid as the release medium, at pH 7.4 and 37 °C and under perfect sink conditions. The result shows that drug loading is highest for pure hydroxyapatite and decreased with increasing quantity of sodium alginate. However, the release study revealed that HASA-5%wt and HASA-20%wt presented better release profile than pure hydroxyapatite, while HASA-33%wt and HASA-50%wt have poor release profiles. This shows that Methotrexate-loaded hydroxyapatite-sodium alginate if prepared under optimal conditions is a potential carrier for effective delivery of Methotrexate.

Keywords: drug-delivery, hydroxyapatite, methotrexate, nanocomposites, sodium alginate

Procedia PDF Downloads 278
602 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia PDF Downloads 304
601 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing

Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez

Abstract:

This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.

Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy

Procedia PDF Downloads 551
600 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters

Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu

Abstract:

Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).

Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs

Procedia PDF Downloads 197
599 Food Sharing App and the Ubuntu Ssharing Economy: Accessing the Impact of Technology of Food Waste Reduction

Authors: Gabriel Sunday Ayayia

Abstract:

Food waste remains a critical global challenge with significant environmental, economic, and ethical implications. In an era where food waste and food insecurity coexist, innovative technology-driven solutions have emerged, aiming to bridge the gap between surplus food and those in need. Simultaneously, disparities in food access persist, exacerbating issues of hunger and malnutrition. Emerging food-sharing apps offer a promising avenue to mitigate these problems but require further examination within the context of the Ubuntu sharing economy. This study seeks to understand the impact of food-sharing apps, guided by the principles of Ubuntu, on reducing food waste and enhancing food access. The study examines how specific food-sharing apps within the Ubuntu sharing economy could contribute to fostering community resilience and reducing food waste. Ubuntu underscores the idea that we are all responsible for the well-being of our community members. In the context of food waste, this means that individuals and businesses have a collective responsibility to ensure that surplus food is shared rather than wasted. Food-sharing apps align with this principle by facilitating the sharing of excess food with those in need, transforming waste into a communal resource. This research employs a mixed-methods approach of both quantitative analysis and qualitative inquiry. Large-scale surveys will be conducted to assess user behavior, attitudes, and experiences with food-sharing apps, focusing on the frequency of use, motivations, and perceived impacts. Qualitative interviews with app users, community organizers, and stakeholders will explore the Ubuntu-inspired aspects of food-sharing apps and their influence on reducing food waste and improving food access. Quantitative data will be analyzed using statistical techniques, while qualitative data will undergo thematic analysis to identify key patterns and insights. This research addresses a critical gap in the literature by examining the role of food-sharing apps in reducing food waste and enhancing food access, particularly within the Ubuntu sharing economy framework. Findings will offer valuable insights for policymakers, technology developers, and communities seeking to leverage technology to create a more just and sustainable food system.

Keywords: sharing economy, food waste reduction, technology, community- based approach

Procedia PDF Downloads 68
598 ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion

Authors: Masoumeh Tabatabaee, Zahra Shahryarzadeh, Masoud R. Shishebor

Abstract:

Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation.

Keywords: photodegradation, ZnO/TiO2, nanoparticle, cyanide ion

Procedia PDF Downloads 395
597 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices

Procedia PDF Downloads 190
596 Supply Side Readiness for Universal Health Coverage: Assessing the Availability and Depth of Essential Health Package in Rural, Remote and Conflict Prone District

Authors: Veenapani Rajeev Verma

Abstract:

Context: Assessing facility readiness is paramount as it can indicate capacity of facilities to provide essential care for resilience to health challenges. In the context of decentralization, estimation of supply side readiness indices at sub national level is imperative for effective evidence based policy but remains a colossal challenge due to lack of dependable and representative data sources. Setting: District Poonch of Jammu and Kashmir was selected for this study. It is remote, rural district with unprecedented topographical barriers and is identified as high priority by government. It is also a fragile area as is bounded by Line of Control with Pakistan bearing the brunt of cease fire violations, military skirmishes and sporadic militant attacks. Hilly geographical terrain, rudimentary/absence of road network and impoverishment are quintessential to this area. Objectives: Objective of the study is to a) Evaluate the service readiness of health facilities and create a concise index subsuming plethora of discrete indicators and b) Ascertain supply side barriers in service provisioning via stakeholder’s analysis. Study also strives to expand analytical domain unravelling context and area specific intricacies associated with service delivery. Methodology: Mixed method approach was employed to triangulate quantitative analysis with qualitative nuances. Facility survey encompassing 90 Subcentres, 44 Primary health centres, 3 Community health centres and 1 District hospital was conducted to gauge general service availability and service specific availability (depth of coverage). Compendium of checklist was designed using Indian Public Health Standards (IPHS) in form of standard core questionnaire and scorecard generated for each facility. Information was collected across dimensions of amenities, equipment, medicines, laboratory and infection control protocols as proposed in WHO’s Service Availability and Readiness Assesment (SARA). Two stage polychoric principal component analysis employed to generate a parsimonious index by coalescing an array of tracer indicators. OLS regression method used to determine factors explaining composite index generated from PCA. Stakeholder analysis was conducted to discern qualitative information. Myriad of techniques like observations, key informant interviews and focus group discussions using semi structured questionnaires on both leaders and laggards were administered for critical stakeholder’s analysis. Results: General readiness score of health facilities was found to be 0.48. Results indicated poorest readiness for subcentres and PHC’s (first point of contact) with composite score of 0.47 and 0.41 respectively. For primary care facilities; principal component was characterized by basic newborn care as well as preparedness for delivery. Results revealed availability of equipment and surgical preparedness having lowest score (0.46 and 0.47) for facilities providing secondary care. Presence of contractual staff, more than 1 hr walk to facility, facilities in zone A (most vulnerable) to cross border shelling and facilities inaccessible due to snowfall and thick jungles was negatively associated with readiness index. Nonchalant staff attitude, unavailability of staff quarters, leakages and constraint in supply chain of drugs and consumables were other impediments identified. Conclusions/Policy Implications: It is pertinent to first strengthen primary care facilities in this setting. Complex dimensions such as geographic barriers, user and provider behavior is not under precinct of this methodology.

Keywords: effective coverage, principal component analysis, readiness index, universal health coverage

Procedia PDF Downloads 121
595 Psychometric Properties of the Secondary School Stressor Questionnaire among Adolescents at Five Secondary Schools

Authors: Muhamad Saiful Bahri Yusoff

Abstract:

This study aimed to evaluate the construct, convergent, and discriminant validity of the Secondary School Stressor Questionnaire (3SQ) as well as to evaluate its internal consistency among adolescents in Malaysian secondary schools. A cross-sectional study was conducted on 700 secondary school students in five secondary schools. Stratified random sampling was used to select schools and participants. The confirmatory factor analysis was performed by AMOS to examine construct, convergent, and discriminant validity. The reliability analysis was performed by SPSS to determine internal consistency. The results showed that the original six-factor model with 44 items failed to achieve acceptable values of the goodness of fit indices, suggesting poor model fit. The new five-factor model of 3SQ with 22 items demonstrated acceptable level of goodness of fit indices to signify a model fit. The overall Cronbach’s alpha value for the new version 3SQ was 0.93, while the five constructs ranged from 0.68 to 0.94. The composite reliability values of each construct ranged between 0.68 and 0.93, indicating satisfactory to high level of convergent validity. Our study did not support the construct validity of the original version of 3SQ. We found the new version 3SQ showed more convincing evidence of validity and reliability to measure stressors of adolescents. Continued research is needed to verify and maximize the psychometric credentials of 3SQ across countries.

Keywords: stressors, adolescents, secondary school students, 3SQ, psychometric properties

Procedia PDF Downloads 403
594 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana

Abstract:

The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.

Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system

Procedia PDF Downloads 86
593 Feasibility Study of Friction Stir Welding Application for Kevlar Material

Authors: Ahmet Taşan, Süha Tirkeş, Yavuz Öztürk, Zafer Bingül

Abstract:

Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.

Keywords: analytical modeling, composite materials welding, friction stir welding, heat generation

Procedia PDF Downloads 158
592 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 130
591 Study on the Governance of Riverside Public Space in Mountainous Cities from the Perspective of Health and Safety

Authors: Chenxu Fang, Qikai Guan

Abstract:

Riverside public space in mountainous cities has unique scenic resources and humanistic connotations and is an important place indispensable to the activities of urban residents. In recent years, with the continuous development of society and the expansion of the city, the public space along the riverside has been affected to a certain extent. Based on this, this study is based on the concept of health and safety through the study of riverfront space in the local section of Jialing River in Chongqing City; according to the actual use function of riverfront public space, the riverfront public space in mountainous cities is categorized into leisure and recreational riverfront space, ecological conservation waterfront space, and composite function waterfront space. Starting from the health and safety elements affecting the environment in the riverfront public space, the health and safety influencing factors of the riverfront public space are categorized into three major categories, namely, material, non-material, and social, and through the field research and questionnaire collection, combined with the analysis of the Likert scale, the important levels of the health and safety influencing factors of different types of the riverfront public space of the mountainous cities are clarified. We summarize the factors affecting the health and safety of mountainous riverside spaces, map their importance levels to the design of different types of riverside spaces, and put forward three representative paths for the governance of the safety and health of mountainous riverside public space.

Keywords: health and safety, mountain city, riverfront public space, spatial governance, Chongqing Jialing River

Procedia PDF Downloads 47
590 Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol

Authors: Lakshmi Sirisha Kotikalapudi

Abstract:

Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol.

Keywords: atenolol, chitosan, niosomes, transdermal

Procedia PDF Downloads 295
589 Composite Approach to Extremism and Terrorism Web Content Classification

Authors: Kolade Olawande Owoeye, George Weir

Abstract:

Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.

Keywords: sentiposit, classification, extremism, terrorism

Procedia PDF Downloads 278
588 Emerging Technologies for Learning: In Need of a Pro-Active Educational Strategy

Authors: Pieter De Vries, Renate Klaassen, Maria Ioannides

Abstract:

This paper is about an explorative research into the use of emerging technologies for teaching and learning in higher engineering education. The assumption is that these technologies and applications, which are not yet widely adopted, will help to improve education and as such actively work on the ability to better deal with the mismatch of skills bothering our industries. Technologies such as 3D printing, the Internet of Things, Virtual Reality, and others, are in a dynamic state of development which makes it difficult to grasp the value for education. Also, the instruments in current educational research seem not appropriate to assess the value of such technologies. This explorative research aims to foster an approach to better deal with this new complexity. The need to find out is urgent, because these technologies will be dominantly present in the near future in all aspects of life, including education. The methodology used in this research comprised an inventory of emerging technologies and tools that potentially give way to innovation and are used or about to be used in technical universities. The inventory was based on both a literature review and a review of reports and web resources like blogs and others and included a series of interviews with stakeholders in engineering education and at representative industries. In addition, a number of small experiments were executed with the aim to analyze the requirements for the use of in this case Virtual Reality and the Internet of Things to better understanding the opportunities and limitations in the day-today learning environment. The major findings indicate that it is rather difficult to decide about the value of these technologies for education due to the dynamic state of change and therefor unpredictability and the lack of a coherent policy at the institutions. Most decisions are being made by teachers on an individual basis, who in their micro-environment are not equipped to select, test and ultimately decide about the use of these technologies. Most experiences are being made in the industry knowing that the skills to handle these technologies are in high demand. The industry though is worried about the inclination and the capability of education to help bridge the skills gap related to the emergence of new technologies. Due to the complexity, the diversity, the speed of development and the decay, education is challenged to develop an approach that can make these technologies work in an integrated fashion. For education to fully profit from the opportunities, these technologies offer it is eminent to develop a pro-active strategy and a sustainable approach to frame the emerging technologies development.

Keywords: emerging technologies, internet of things, pro-active strategy, virtual reality

Procedia PDF Downloads 191
587 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines

Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh

Abstract:

The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.

Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method

Procedia PDF Downloads 267
586 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes

Authors: Fama Jallow, Melody Neaves, Professor Mcgregor

Abstract:

The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.

Keywords: hydrogen production, electrode, lattice structure, Africa

Procedia PDF Downloads 69
585 Preoperative 3D Planning and Reconstruction of Mandibular Defects for Patients with Oral Cavity Tumors

Authors: Janis Zarins, Kristaps Blums, Oskars Radzins, Renars Deksnis, Atis Svare, Santa Salaka

Abstract:

Wide tumor resection remains the first choice method for tumors of the oral cavity. Nevertheless, remained tissue defect impacts patients functional and aesthetical outcome, which could be improved using microvascular tissue transfers. Mandibular reconstruction is challenging due to the complexity of composite tissue defects and occlusal relationships for normal eating, chewing, and pain free jaw motions. Individual 3-D virtual planning would provide better symmetry and functional outcome. The main goal of preoperative planning is to develop a customized surgical approach with patient specific cutting guides of the mandible, osteotomy guides of the fibula, pre-bended osteosynthesis plates to perform more precise reconstruction, to decrease the surgery time and reach the best outcome. Our study is based on the analysis of 32 patients operated on between 2019 to 2021. All patients underwent mandible reconstruction with vascularized fibula flaps. Patients characteristics, surgery profile, survival, functional outcome, and quality of life was evaluated. Preoperative planning provided a significant decrease of surgery time and the best arrangement of bone closely similar as before the surgery. In cases of bone asymmetry, deformity and malposition, a new mandible was created using 3D planning to restore the appearance of lower jaw anatomy and functionality.

Keywords: mandibular, 3D planning, cutting guides, fibula flap, reconstruction

Procedia PDF Downloads 126
584 Esthetic Rehabilitation of White and Brown Spot Lesions with Ceramic Veneers: A Clinical Report

Authors: Rania E. Ramadan

Abstract:

Dental esthetics is subjective, can be reported by the dentist and not noticed by the patient. However, if there is any imperfection seen by both the dentist and the patient, it is considered as an unesthetic like white and/or brown spot lesions. Many patients nowadays have been concerned about dental esthetics. Esthetic rehabilitation of anterior teeth and even maxillary premolars aid a lot in patients’ satisfaction of their smile consequently, gaining positive psychological impact for the patients. Many cases need esthetic rehabilitation such as diastema closure, spaced teeth and masking discolored teeth. Dental fluorosis and enamel hypo calcification can be presented as white and/or brown spot lesions. There are many treatment options for the management of these spotted teeth. Treatment options range from bleaching, microabrasion, direct composite restorations, porcelain veneers, and complete coverage crowns. The selection of certain options depends on many factors: the patient’s age, socioeconomic status and the severity of the lesion. In this clinical report, a 22-year-old male patient has been presented to the Department of Prosthodontics in Alexandria University, Egypt. His chief complaint was, “I was unpleased by white and brown spots in my teeth and I want to close the space between the two maxillary central.” Upon medical history, clinical examination, diagnostic photographs, and digital smile design by Exocad software, lithium disilicate veneers were chosen as the treatment of choice in maxillary anterior and first premolars.

Keywords: flourosis, ceramic veneers, case report, diastema closure

Procedia PDF Downloads 145
583 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 257
582 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime

Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar

Abstract:

The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.

Keywords: analcime, hydrothermal synthesis, mordenite, zeolite

Procedia PDF Downloads 264
581 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 34
580 Spinach Lipid Extract as an Alternative Flow Aid for Fat Suspensions

Authors: Nizaha Juhaida Mohamad, David Gray, Bettina Wolf

Abstract:

Chocolate is a material composite with a high fraction of solid particles dispersed in a fat phase largely composed of cocoa butter. Viscosity properties of chocolate can be manipulated by the amount of fat - increased levels of fat lead to lower viscosity. However, a high content of cocoa butter can increase the cost of the chocolate and instead surfactants are used to manipulate viscosity behaviour. Most commonly, lecithin and polyglycerol polyricinoleate (PGPR) are used. Lecithin is a natural lipid emulsifier which is based on phospholipids while PGPR is a chemically produced emulsifier which based on the long continuous chain of ricinoleic acid. Lecithin and PGPR act to lower the viscosity and yield stress, respectively. Recently, natural lipid emulsifiers based on galactolipid as the functional ingredient have become of interest. Spinach lipid is found to have a high amount of galactolipid, specifically MGDG and DGDG. The aim of this research is to explore the influence of spinach lipid in comparison with PGPR and lecithin on the rheological properties of sugar/oil suspensions which serve as chocolate model system. For that purpose, icing sugar was dispersed from 40%, 45% and 50% (w/w) in oil which has spinach lipid at concentrations from 0.1 – 0.7% (w/w). Based on viscosity at 40 s-1 and yield value reported as shear stress measured at 5 s-1, it was found that spinach lipid shows viscosity reducing and yield stress lowering effects comparable to lecithin and PGPR, respectively. This characteristic of spinach lipid demonstrates great potential for it to act as single natural lipid emulsifier in chocolate.

Keywords: chocolate viscosity, lecithin, polyglycerol polyricinoleate (PGPR), spinach lipid

Procedia PDF Downloads 248
579 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 361
578 Role of Tele-health in Expansion of Medical Care

Authors: Garima Singh, Kunal Malhotra

Abstract:

Objective: The expansion of telehealth has been instrumental in increasing access to medical services, especially for underserved and rural communities. In 2020, 14 million patients received virtual care through telemedicine and the global telemedicine market is expected to reach up to $185 million by 2023. It provides a platform and allows a patient to receive primary care as well as specialized care using technology and the comfort of their homes. Telemedicine was particularly useful during COVID-pandemic and the number of telehealth visits increased by 5000% during that time. It continues to serve as a significant resource for patients seeking care and to bridge the gap between the disease and the treatment. Method: As per APA (American Psychiatric Association), Telemedicine is the process of providing health care from a distance through technology. It is a subset of telemedicine, and can involve providing a range of services, including evaluations, therapy, patient education and medication management. It can involve direct interaction between a physician and the patient. It also encompasses supporting primary care providers with specialist consultation and expertise. It can also involve recording medical information (images, videos, etc.) and sending this to a distant site for later review. Results: In our organization, we are using telepsychiatry and serving 25 counties and approximately 1.4 million people. We provide multiple services, including inpatient, outpatient, crisis intervention, Rehab facility, autism services, case management, community treatment and multiple other modalities. With project ECHO (Extension for Community Healthcare Outcomes) it has been used to advise and assist primary care providers in treating mental health. It empowers primary care providers to treat patients in their own community by sharing knowledge. Conclusion: Telemedicine has shown to be a great medium in meeting patients’ needs and accessible mental health. It has been shown to improve access to care in both urban and rural settings by bringing care to a patient and reducing barriers like transportation, financial stress and resources. Telemedicine is also helping with reducing ER visits, integrating primary care and improving the continuity of care and follow-up. There has been substantial evidence and research about its effectiveness and its usage.

Keywords: telehealth, telemedicine, access to care, medical technology

Procedia PDF Downloads 103
577 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 147
576 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 50