Search results for: lateral displacement of structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5415

Search results for: lateral displacement of structures

3165 A Survey on Important Factors of the Ethereum Network Performance

Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia

Abstract:

Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.

Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm

Procedia PDF Downloads 216
3164 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 387
3163 Pineapple Patriarch: Local Agency in Sustainability Initiatives despite Community Reliance on Pineapple Monoculture

Authors: Afshan Golriz

Abstract:

This paper addresses the nuances in the relationship between the rural community of Volcan, Costa Rica, and the presence of multinational pineapple giant Pineapple Development Corporation (PINDECO). The paper analyzes the continuous negotiation between the need for environmental protection in the face of pineapple monoculture and the socioeconomic dependencies of the community on the company. Drawing on eight years of ethnographic work in Volcan de Buenos Aires and relying on intergenerational interviews that document oral histories, this article provides a socio-historical account of the economic and environmental impact of the presence of PINDECO in the southern zone of the country. The paper draws on interviews and in-depth participant observation, conducted by the author in intermittent periods over eight years. The research sheds light on the tensions between the village and PINDECO, as simultaneous acceptance of and opposition to the company persist by different stakeholders in the region. In doing so, this paper examines the strikingly powerful affinity toward the company and the community's regard for PINDECO as the town patriarch despite social and environmental injustices. In demonstrating these tensions, the author problematizes the practice of conducting foreign environmental research in developing countries, and more importantly, proposing changes to environmental conservation and socioeconomic structures without understanding community reliance on the presence of corporations such as PINDECO and the threats that changes to existing structures could pose to community members' livelihoods. In complicating these common western academic practices, the author takes an anti-colonial approach to environmental research, refusing the assumption that the affinity toward the company by the community of Volcan is rooted in ignorance, lack of education, or lack of interest in environmental conservation. The author instead highlights local knowledge and agency, demonstrating the many ways in which the community itself is producing knowledge and taking action. Through this paper, common assumptions regarding the agency of such communities are contested, and the grassroots environmental initiatives of Volcan, Costa Rica are brought to life.

Keywords: environmental conservation, grassroots movements, local knowledge, agricultural multinational

Procedia PDF Downloads 124
3162 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 127
3161 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test

Procedia PDF Downloads 168
3160 Fabrication of Silicon Solar Cells Using All Sputtering Process

Authors: Ching-Hua Li, Sheng-Hui Chen

Abstract:

Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.

Keywords: solar cell, sputtering process, pvd, alloy target

Procedia PDF Downloads 575
3159 Enabling Socio Cultural Sustainability of the "Thousand and One Churches" Archaeological Site

Authors: E. Erdogan, M. Ulusoy

Abstract:

In terms of tourism, the concept of sustainability can be defined as preserving and developing natural, historical, cultural, social, and aesthetic values and enabling their permanency. Sustainable tourism aims to preserve natural, historical, cultural, and social resources, also by supporting economic progress protecting economic development and environmental values that emerge as a consequence of tourism activities. Cultural tourism feeds on sustainable cultural treasures inherently and is the most effective touristic activity. Traditional configurations and structural characteristics play an important role in generating cultural tourism in a region. Sustainable cultural tourism is related to trips upon people who embark with the aim of visiting culturally rich regions, learning about and observing fast-disappearing lifestyles and collecting cultural values as memories. With its huge tourism potential, Karadağ is the most significant cultural asset of the Karaman province, possessing unique riches in terms of cultural world history. Host to one of the most important Byzantine cities in Anatolia, Karadağ is like an open-air museum with its unparalleled architectural structures. There is a village named Madenşehir in the plain at the outskirts of Karadağ, near to which are located the “Thousand and One Churches” ruins. The 80-household house is located near the ruins in an area that been declared a 1st degree historic preservation district. stones gathered from local churches were used in the construction of these households. A ministry has assigned a new residential site near the boundaries of the 2nd degree preservation district, and the decision has been made to move the occupants to this area. The most important issue here is to enable locals’ sociocultural and socioeconomic sustainability. It is also important to build these structures in a manner compatible with the historical visual look, ecological system and environmental awareness. Therefore this new site will be planned as touristic area in terms of sustainable cultural tourism and in these new plans, shall fulfill functions oriented toward both tourists and locals. It is very important that this change be sustainable and also support cultural tourism.

Keywords: cultural tourism, new village settlement, socio cultural sustainability, “thousand and one churches” site

Procedia PDF Downloads 393
3158 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 289
3157 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach

Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo

Abstract:

This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.

Keywords: globular protein, modulating function, white noise, winding probability

Procedia PDF Downloads 466
3156 From Modeling of Data Structures towards Automatic Programs Generating

Authors: Valentin P. Velikov

Abstract:

Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one.

Keywords: computer science, graphical user interface, user dialog interface, dialog frames, data modeling, subject area modeling

Procedia PDF Downloads 298
3155 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot

Procedia PDF Downloads 167
3154 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity

Procedia PDF Downloads 254
3153 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 250
3152 Enhanced PAHs' Biodegradation by Consortia Developed with Biofilm – Biosurfactant - Producing Microorganisms

Authors: Swapna Guntupalli, Leela Madhuri Chalasani, Kshatri Jyothi, C. V. Rao, Bondili J. S.

Abstract:

The study hypothesizes that enhanced biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) is achievable with an assemblage of microorganisms that are capable of producing biofilm and biosurfactants. Accordingly, PAHs degrading microorganism’s (bacteria, fungi, actinomycetes and yeast) were screened and grouped into different consortia based on their capabilities to produce biofilm and biosurfactants. Among these, Consortium BTSN09 consisting of bacterial fungal cocultures showed highest degradation due to the synergistic action between them. Degradation effiencies were evaluated using HPLC and GC-MS. Within 7days, BTSN09 showed 51% and 50.7% degradation of Phenanthrene (PHE) and Pyrene (PYR) with 200mg/L and 100 mg/L concentrations respectively in a liquid medium. In addition, several degradative enzymes like laccases, 1hydroxy-2-naphthoicacid dioxygenase, 2-carboxybenzaldehyde dehydrogenase, catechol1,2 dioxygenase and catechol2,3 dioxygenase activity was observed during degradation. Degradation metabolites were identified using GC-MS analysis and from the results it was confirmed that the metabolism of degradation proceeds via pthalic acid pathway for both PAHs. Besides, Microbial consortia also demonstrated good biosurfactant production capacity, achieving maximum oil displacement area and emulsification activity of 19.62 cm2, 65.5% in presence of PAHs as sole carbon source. Scanning Electron Microscopy analysis revealed exopolysaccharides (EPS) production, micro and macrocolonies formation with different stages of biofim development in presence of PAHs during degradation.

Keywords: PAHs, biosurfactant, biofilm, biodegradation

Procedia PDF Downloads 575
3151 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: oscillating cylinder, secondary streaming, flow regimes, asymptotic and bifurcation analysis

Procedia PDF Downloads 428
3150 Study of the Energy Levels in the Structure of the Laser Diode GaInP

Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi

Abstract:

This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.

Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages

Procedia PDF Downloads 483
3149 Exploring Solutions in Extended Horava-Lifshitz Gravity

Authors: Aziza Altaibayeva, Ertan Güdekli, Ratbay Myrzakulov

Abstract:

In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.

Keywords: quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times

Procedia PDF Downloads 571
3148 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches

Authors: S. Sandri, G. M. Contessa, C. Poggi

Abstract:

An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.

Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection

Procedia PDF Downloads 349
3147 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 629
3146 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios

Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong

Abstract:

This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.

Keywords: computational analysis, damage scenarios, electronic road signs, finite element, welded connections

Procedia PDF Downloads 87
3145 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 261
3144 Including Local Economic and Anthropometric Parameters in the Design of an Stand up Wheelchair

Authors: Urrutia Fernando, López Jessica, Sánchez Carlos, San Antonio Thalía

Abstract:

Ecuador, as a signatory country of the convention of the rights of persons with disabilities (CRPD) has, in the recent years, strengthened the structures and legal framework required to protect this minority comprised of 13.2% of its total population. However, the reality is that this group has disproportionately low earnings and low educational attainment in comparison with the general population. The main struggles, to promote job placement of wheelchairs users, are environmental discrimination caused by accessibility in structures and transportation, this mainly due to the cost, for private and public entities, of performing the reasonable accommodation they require. It is widely known that product development and production is needed to support effective implementation of the CRPD and that walking and standing are the major life activities, in this context the objective of this investigation is to promote job placement of wheelchair user in the province of Tungurahua by means of the design, production and marketing of a customized stand up wheelchair. Exploratory interviews and measurements were performed in a representative sample of working age wheelchairs users that develop their disability after achieving their physical maturity and that are capable of performing professional activities with their upper limbs, this in order to detect the user’s preference and determine the local economic and anthropometric parameters to be included in the wheelchair design. The findings reveal factors that uniquely impact quality of life and development for people with a mobility disability within the context of the province, first that transportation is a big issue since public buses does not have accessibility for wheelchair users and the absence of curb cuts and the presence of trash bins over the sidewalks among other hinders an economic independent mobility, second that the proposal based in the idea of modifying the wheelchairs to make it able to overcome certain obstacles helps people in wheelchair to improve their independent living and by reducing the costs of modification for the employer could improve their chances of finding work.

Keywords: anthropometrics, job placement, stand up wheelchair, user centered design

Procedia PDF Downloads 550
3143 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice

Authors: Tarek Abdoun, Ricardo Dobry

Abstract:

This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.

Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts

Procedia PDF Downloads 289
3142 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: expanding material, heavyweight concrete, self-healing performance, synthetic fiber

Procedia PDF Downloads 332
3141 Chemical Amelioration of Expansive Soils

Authors: B. R. Phanikumar, Sana Suri

Abstract:

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.

Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride

Procedia PDF Downloads 310
3140 Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field

Authors: M. Khazam, M. Altawil, A. Eljabri

Abstract:

Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development.

Keywords: EoS models, gas-condensate, gas cycling, near critical fluid

Procedia PDF Downloads 315
3139 Numerical Homogenization of Nacre

Authors: M. Arunachalam, M. Pandey

Abstract:

Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.

Keywords: finite element, homogenization, inelastic deformation, staggered arrangement

Procedia PDF Downloads 314
3138 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions

Authors: Rahul Saraswat

Abstract:

More recently, a focus has been given to replacing machined stainless steel metal flow fields with inexpensive wire mesh current collectors. The flow fields are based on simple woven wire mesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. The objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction, and the following methodology was used. 1. The passive direct methanol fuel cell (DMFC) can be made more compact, lighter, and less costly by changing the material used in its construction. 2. Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell (DMFC) was fabricated using a given MEA (Membrane Electrode Assembly) and tested for different current collector structures. Mesh current collectors of different mesh densities along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure, and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points: Area specific resistance (ASR) of wire mesh current collectors is lower than the ASR of stainless steel current collectors. Also, the power produced by wire mesh current collectors is always more than that produced by stainless steel current collectors. 1. Low or moderate methanol concentrations should be used for better and stable DMFC performance. 2. Wiremesh is a good substitute for stainless steel for current collector plates of passive DMFC because of its lower cost (by about 27 %), flexibility, and light in weight characteristics of wire mesh.

Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration, support structure

Procedia PDF Downloads 74
3137 Design and Construction of a Device to Facilitate the Stretching of a Plantiflexors Muscles in the Therapy of Rehabilitation for Patients with Spastic Hemiplegia

Authors: Nathalia Andrea Calderon Lesmes, Eduardo Barragan Parada, Diego Fernando Villegas Bermudez

Abstract:

Spasticity in the plantiflexor muscles as a product of stroke (CVA-Cerebrovascular accident) restricts the mobility and independence of the affected people. Commonly, physiotherapists are in charge of manually performing the rehabilitation therapy known as Sustained Mechanical Stretching, rotating the affected foot of the patient in the sagittal plane. However, this causes a physical wear on the professional because it is a fatiguing movement. In this article, a mechanical device is developed to implement this rehabilitation therapy more efficiently. The device consists of a worm-crown mechanism that is driven by a crank to gradually rotate a platform in the sagittal plane of the affected foot, in order to achieve dorsiflexion. The device has a range of sagittal rotation up to 150° and has velcro located on the footplate that secures the foot. The design of this device was modeled by using CAD software and was checked structurally with a general purpose finite element software to be sure that the device is safe for human use. As a measurement system, a goniometer is used in the lateral part of the device and load cells are used to measure the force in order to determine the opposing torque exerted by the muscle. Load cells sensitivity is 1.8 ± 0.002 and has a repeatability of 0.03. Validation of the effectiveness of the device is measured by reducing the opposition torque and increasing mobility for a given patient. In this way, with a more efficient therapy, an improvement in the recovery of the patient's mobility and therefore in their quality of life can be achieved.

Keywords: biomechanics, mechanical device, plantiflexor muscles, rehabilitation, spastic hemiplegia, sustained mechanical stretching

Procedia PDF Downloads 161
3136 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 633