Search results for: K-nearest neighbors algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3714

Search results for: K-nearest neighbors algorithm

1464 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications

Authors: Yaw-Ling Lin

Abstract:

A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.

Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences

Procedia PDF Downloads 167
1463 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement

Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad

Abstract:

An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.

Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter

Procedia PDF Downloads 399
1462 ANFIS Approach for Locating Faults in Underground Cables

Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat

Abstract:

This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.

Keywords: ANFIS, fault location, underground cable, wavelet transform

Procedia PDF Downloads 513
1461 Interactive Image Search for Mobile Devices

Authors: Komal V. Aher, Sanjay B. Waykar

Abstract:

Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.

Keywords: color space, histogram, mobile device, mobile visual search, multimodal search

Procedia PDF Downloads 367
1460 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 11
1459 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh

Abstract:

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.

Keywords: frequency control, islanded microgrid, multi-agent system, load shedding

Procedia PDF Downloads 463
1458 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance

Procedia PDF Downloads 447
1457 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
1456 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365
1455 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System

Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian

Abstract:

In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.

Keywords: dispatching, solar ingot, simulation, flexsim

Procedia PDF Downloads 300
1454 Simulation and Optimization of an Annular Methanol Reformer

Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu

Abstract:

This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.

Keywords: methanol reformer, methanol steam reforming, optimization, simulation

Procedia PDF Downloads 332
1453 Brake Force Distribution in Passenger Cars

Authors: Boukhris Lahouari, Bouchetara Mostefa

Abstract:

The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. These will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.

Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire

Procedia PDF Downloads 79
1452 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 210
1451 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: particle swarm optimization, migration, variable neighborhood search, multiobjective optimization

Procedia PDF Downloads 167
1450 IMPERTIO: An Efficient Communication Interface for Cerebral Palsy Patients

Authors: M. Zaïgouche, A. Kouvahe, F. Stefanelli

Abstract:

IMPERTIO is a high technology based project aiming at offering efficient assistance help in communication for persons affected by Cerebral Palsy. The systems currently available are hardly used by these patients who are not satisfied by ergonomics and response time. The project rests upon the concept that, opposite to usual master-slave communication giving power to the entity with larger range of possibilities, providing conversely the mastery to the entity with smaller range of possibilities will allow a better understanding ground for both parties. Entirely customizable, the application developed from this idea gives full freedom to the user. Through pictograms (one button linked to a word or a sentence) and adapted keyboard, noticeable improvements are brought to the response time and ease to use ergonomics.

Keywords: cerebral palsy, master-slave relation, communication interface, virtual keyboard, word construction algorithm

Procedia PDF Downloads 400
1449 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels

Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche

Abstract:

This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.

Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization

Procedia PDF Downloads 496
1448 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: dynamic force identification, dynamic responses, sub-structure, time domain

Procedia PDF Downloads 361
1447 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables

Procedia PDF Downloads 508
1446 Secured Power flow Algorithm Including Economic Dispatch with GSDF Matrix Using LabVIEW

Authors: Slimane Souag, Amel Graa, Farid Benhamida

Abstract:

In this paper we present a new method for solving the secured power flow problem by the economic dispatch using DC power flow method and Generation Shift Distribution Factor (GSDF), in this work we create a graphical interface in LabVIEW as a virtual instrument. Hence the dc power flow reduces the power flow problem to a set of linear equations, which make the iterative calculation very fast and the GSFD matrix present the effects of single and multiple generator MW change on the transmission line. The effectiveness of the method developed is identified through its application to an IEEE-14 bus test system. The calculation results show excellent performance of the proposed method, in regard to computation time and quality of results.

Keywords: electrical power system security, economic dispatch, sensitivity matrix, labview

Procedia PDF Downloads 489
1445 Musical Tesla Coil Controlled by an Audio Signal Processed in Matlab

Authors: Sandra Cuenca, Danilo Santana, Anderson Reyes

Abstract:

The following project is based on the manipulation of audio signals through the Matlab software, which has an audio signal that is modified, and its resultant obtained through the auxiliary port of the computer is passed through a signal amplifier whose amplified signal is connected to a tesla coil which has a behavior like a vumeter, the flashes at the output of the tesla coil increase and decrease its intensity depending on the audio signal in the computer and also the voltage source from which it is sent. The amplified signal then passes to the tesla coil being shown in the plasma sphere with the respective flashes; this activation is given through the specified parameters that we want to give in the MATLAB algorithm that contains the digital filters for the manipulation of our audio signal sent to the tesla coil to be displayed in a plasma sphere with flashes of the combination of colors commonly pink and purple that varies according to the tone of the song.

Keywords: auxiliary port, tesla coil, vumeter, plasma sphere

Procedia PDF Downloads 90
1444 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti

Abstract:

The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 435
1443 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine

Procedia PDF Downloads 200
1442 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation

Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi

Abstract:

In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.

Keywords: CFD, RANS, cavitation, fuel, injector

Procedia PDF Downloads 209
1441 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 489
1440 Implementation of the Interlock Protocol to Enhance Security in Unmanned Aerial Vehicles

Authors: Vikram Prabhu, Mohammad Shikh Bahaei

Abstract:

This paper depicts the implementation of a new infallible technique to protect an Unmanned Aerial Vehicle from cyber-attacks. An Unmanned Aerial Vehicle (UAV) could be vulnerable to cyber-attacks because of jammers or eavesdroppers over the network which pose as a threat to the security of the UAV. In the field of network security, there are quite a few protocols which can be used to establish a secure connection between UAVs and their Operators. In this paper, we discuss how the Interlock Protocol could be implemented to foil the Man-in-the-Middle Attack. In this case, Wireshark has been used as the sniffer (man-in-the-middle). This paper also shows a comparison between the Interlock Protocol and the TCP Protocols using cryptcat and netcat and at the same time highlights why the Interlock Protocol is the most efficient security protocol to prevent eavesdropping over the communication channel.

Keywords: interlock protocol, Diffie-Hellman algorithm, unmanned aerial vehicles, control station, man-in-the-middle attack, Wireshark

Procedia PDF Downloads 301
1439 Complete Enumeration Approach for Calculation of Residual Entropy for Diluted Spin Ice

Authors: Yuriy A. Shevchenko, Konstantin V. Nefedev

Abstract:

We consider the antiferromagnetic systems of Ising spins located at the sites of the hexagonal, triangular and pyrochlore lattices. Such systems can be diluted to a certain concentration level by randomly replacing the magnetic spins with nonmagnetic ones. Quite recently we studied density of states (DOS) was calculated by the Wang-Landau method. Based on the obtained data, we calculated the dependence of the residual entropy (entropy at a temperature tending to zero) on the dilution concentration for quite large systems (more than 2000 spins). In the current study, we obtained the same data for small systems (less than 20 spins) by a complete search of all possible magnetic configurations and compared the result with the result for large systems. The shape of the curve remains unchanged in both cases, but the specific values of the residual entropy are different because of the finite size effect.

Keywords: entropy, pyrochlore, spin ice, Wang-Landau algorithm

Procedia PDF Downloads 264
1438 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
1437 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 387
1436 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: adaptive methods, LSE, MSE, prediction of financial Markets

Procedia PDF Downloads 336
1435 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575