Search results for: real rolled thickness of strips
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6740

Search results for: real rolled thickness of strips

4520 The Effectiveness of Non-surgical Treatment for Androgenetic Alopecia in Men: A Systematic Review and Meta-Analysis

Authors: Monica Trifitriana, Rido Mulawarman

Abstract:

Introduction: Androgenetic alopecia (AGA) is a genetically predetermined disorder due to an excessive response to dihydrotestosterone (DHT). Currently, non-surgical treatment of androgenetic alopecia is more in demand by the patient. There are many non-surgical treatments, ranging from topical treatments oral medications, and procedure treatments. Objective: We aim to assess the latest evidence of the efficacy of non-surgical treatments of androgenetic alopecia in men in comparison to placebo for improving hair density, thickness, and growth. Method: We performed a comprehensive search on topics that assess non-surgical treatments of androgenetic alopecia in men from inception up until November 2021. Result: There were 24 studies out of a total of 2438 patients divided into five non-surgical treatment groups to assess the effectiveness of hair growth, namely: minoxidil 2% (MD: 8.11 hairs/cm²), minoxidil 5% (MD: 12.02 hairs/cm²), low-level laser light therapy/LLLT (MD: 12.35 hairs/cm²), finasteride 1mg (MD: 20.43 hairs/cm²), and Platelete-Rich Plasma/PRP with microneedling (MD: 26.33 hairs/cm²). All treatments had significant results for increasing hair growth, particularly in cases of androgenetic alopecia in men (P<0.00001). Conclusion: From the results, it was found that the five non-surgical treatment groups proved to be effective and significant for hair growth, particularly in cases of androgenetic alopecia in men. In order of the best non-surgical treatment for hair growth is starting from PRP with microneedling, Finasteride 1mg, LLLT, minoxidil 5%, to minoxidil 2%.

Keywords: androgenetic alopecia, non-surgical, men, meta-analysis, systematic review

Procedia PDF Downloads 152
4519 Application of a Geomechanical Model to Justify the Exploitation of Bazhenov-Abalak Formation, Western Siberia

Authors: Yan Yusupov, Aleksandra Soldatova, Yaroslav Zaglyadin

Abstract:

The object of this work is Bazhenov-Abalak unconventional formation (BAUF) of Western Siberia. On the base of the Geomechanical model (GMM), a methodology was developed for sweet spot intervals and zones for drilling horizontal wells with hydraulic fracturing. Based on mechanical rock typification, eight mechanical rock types (MRT) have been identified. Sweet spot intervals are represented by siliceous-carbonate (2), siliceous (5) and carbonate (8) MRT that have the greatest brittleness index (BRIT). A correlation has been established between the thickness of brittle intervals and the initial well production rates, which makes it possible to identify sweet spot zones for drilling horizontal wells with hydraulic fracturing. Brittle and ductile intervals are separated by a BRIT cut-off of 0.4 since wells located at points with BRIT < 0.4 have insignificant rates (less than 2 m³/day). Wells with an average BRIT in BAUF of more than 0.4 reach industrial production rates. The next application of GMM is associated with the instability of the overburdened clay formation above the top of the BAUF. According to the wellbore stability analysis, the recommended mud weight for this formation must be not less than 1.53–1.55 g/cc. The optimal direction for horizontal wells corresponds to the azimuth of Shmin equal to 70-80°.

Keywords: unconventional reservoirs, geomechanics, sweet spot zones, borehole stability

Procedia PDF Downloads 62
4518 Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese

Authors: Raquel P. F. Guiné, Marlene I. C. Tenreiro, Ana C. Correia, Paulo Barracosa, Paula M. R. Correia

Abstract:

The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40-48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh.

Keywords: chemical composition, color, sensorial analysis, Serra da Estrela cheese, texture

Procedia PDF Downloads 299
4517 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 209
4516 Finite Element Method for Modal Analysis of FGM

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of a FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FOTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 313
4515 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game

Authors: Hossam Ali-Hassan, Michael Bliemel

Abstract:

This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.

Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game

Procedia PDF Downloads 325
4514 Technology Enriched Classroom for Intercultural Competence Building through Films

Authors: Tamara Matevosyan

Abstract:

In this globalized world, intercultural communication is becoming essential for understanding communication among people, for developing understanding of cultures, to appreciate the opportunities and challenges that each culture presents to people. Moreover, it plays an important role in developing an ideal personification to understand different behaviors in different cultures. Native speakers assimilate sociolinguistic knowledge in natural conditions, while it is a great problem for language learners, and in this context feature films reveal cultural peculiarities and involve students in real communication. As we know nowadays the key role of language learning is the development of intercultural competence as communicating with someone from a different cultural background can be exciting and scary, frustrating and enlightening. Intercultural competence is important in FL learning classroom and here feature films can perform as essential tools to develop this competence and overcome the intercultural gap that foreign students face. Current proposal attempts to reveal the correlation of the given culture and language through feature films. To ensure qualified, well-organized and practical classes on Intercultural Communication for language learners a number of methods connected with movie watching have been implemented. All the pre-watching, while watching and post-watching methods and techniques are aimed at developing students’ communicative competence. The application of such activities as Climax, Role-play, Interactive Language, Daily Life helps to reveal and overcome mistakes of cultural and pragmatic character. All the above-mentioned activities are directed at the assimilation of the language vocabulary with special reference to the given culture. The study dwells into the essence of culture as one of the core concepts of intercultural communication. Sometimes culture is not a priority in the process of language learning which leads to further misunderstandings in real life communication. The application of various methods and techniques with feature films aims at developing students’ cultural competence, their understanding of norms and values of individual cultures. Thus, feature film activities will enable learners to enlarge their knowledge of the particular culture and develop a fundamental insight into intercultural communication.

Keywords: climax, intercultural competence, interactive language, role-play

Procedia PDF Downloads 338
4513 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization

Procedia PDF Downloads 361
4512 Parametric Study on the Behavior of Reinforced Concrete Continuous Beams Flexurally Strengthened with FRP Plates

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

External bonding of fiber reinforced polymer (FRP) plates to reinforced concrete (RC) beams is an effective technique for flexural strengthening. This paper presents an analytical parametric study on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers, conducted using simple uniaxial nonlinear finite element model (UNFEM). UNFEM is able to estimate the load-carrying capacity, different failure modes and the interfacial stresses of RC continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. The study investigated the effect of five key parameters on the behavior and moment redistribution of FRP-reinforced continuous beams. The investigated parameters were the length of the FRP plate, the width and the thickness of the FRP plate, the ratio between the area of the FRP plate to the concrete area, the cohesive shear strength of the adhesive layer, and the concrete compressive strength. The investigation resulted in a number of important conclusions reflecting the effects of the studied parameters on the behavior of RC continuous beams flexurally strengthened with externally bonded FRP plates.

Keywords: continuous beams, parametric study, finite element, fiber reinforced polymer

Procedia PDF Downloads 365
4511 Constructivism and Situational Analysis as Background for Researching Complex Phenomena: Example of Inclusion

Authors: Radim Sip, Denisa Denglerova

Abstract:

It’s impossible to capture complex phenomena, such as inclusion, with reductionism. The most common form of reductionism is the objectivist approach, where processes and relationships are reduced to entities and clearly outlined phases, with a consequent search for relationships between them. Constructivism as a paradigm and situational analysis as a methodological research portfolio represent a way to avoid the dominant objectivist approach. They work with a situation, i.e. with the essential blending of actors and their environment. Primary transactions are taking place between actors and their surroundings. Researchers create constructs based on their need to solve a problem. Concepts therefore do not describe reality, but rather a complex of real needs in relation to the available options how such needs can be met. For examination of a complex problem, corresponding methodological tools and overall design of the research are necessary. Using an original research on inclusion in the Czech Republic as an example, this contribution demonstrates that inclusion is not a substance easily described, but rather a relationship field changing its forms in response to its actors’ behaviour and current circumstances. Inclusion consists of dynamic relationship between an ideal, real circumstances and ways to achieve such ideal under the given circumstances. Such achievement has many shapes and thus cannot be captured by description of objects. It can be expressed in relationships in the situation defined by time and space. Situational analysis offers tools to examine such phenomena. It understands a situation as a complex of dynamically changing aspects and prefers relationships and positions in the given situation over a clear and final definition of actors, entities, etc. Situational analysis assumes creation of constructs as a tool for solving a problem at hand. It emphasizes the meanings that arise in the process of coordinating human actions, and the discourses through which these meanings are negotiated. Finally, it offers “cartographic tools” (situational maps, socials worlds / arenas maps, positional maps) that are able to capture the complexity in other than linear-analytical ways. This approach allows for inclusion to be described as a complex of phenomena taking place with a certain historical preference, a complex that can be overlooked if analyzed with a more traditional approach.

Keywords: constructivism, situational analysis, objective realism, reductionism, inclusion

Procedia PDF Downloads 142
4510 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 264
4509 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 264
4508 Analysis of Possible Causes of Fukushima Disaster

Authors: Abid Hossain Khan, Syam Hasan, M. A. R. Sarkar

Abstract:

Fukushima disaster is one of the most publicly exposed accidents in a nuclear facility which has changed the outlook of people towards nuclear power. Some have used it as an example to establish nuclear energy as an unsafe source, while others have tried to find the real reasons behind this accident. Many papers have tried to shed light on the possible causes, some of which are purely based on assumptions while others rely on rigorous data analysis. To our best knowledge, none of the works can say with absolute certainty that there is a single prominent reason that has paved the way to this unexpected incident. This paper attempts to compile all the apparent reasons behind Fukushima disaster and tries to analyze and identify the most likely one.

Keywords: fuel meltdown, Fukushima disaster, Manmade calamity, nuclear facility, tsunami

Procedia PDF Downloads 256
4507 Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software

Authors: Tokirhusen Iqbalbhai Shaikh, M. V. Shah

Abstract:

With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study.

Keywords: soil structure interaction, high speed rail, numerical modelling, PLAXIS3D

Procedia PDF Downloads 104
4506 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range

Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard

Abstract:

Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.

Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity

Procedia PDF Downloads 168
4505 Changes in the Body Weight and Wound Contraction Rate Following Treatment with Piper betel Extract in Diabetic Wounds

Authors: Nurul Z. Sani, Amalina N. Ghazali, Azree Elmy, Lee C. Yuen, Zar C. Thent

Abstract:

Piper betel (P. betel) leaves is widely used in Asian countries for treating diabetes mellitus and its complication. In our previous study, we observed the positive effect of P.betel extract on diabetic wounds following 3 and 7 days of treatment. The aim of the present study was to determine the effect of P.betel leaves extract in the diabetic rats was observed in terms of body weight and wound contraction rates following 5 days of the treatment. Total 64 male Sprague-Dawley rats were used and the experimental rats received a single dose of 60mg/kg of Streptozotocin (STZ) injection, intraperitoneally. Four full thickness (6mm) cutaneous wounds were created on dorsum of each rat. The rats were divideid into (n=8): Non-treated Control (NC), Non-treated Diabetic (ND), diabetic treated with commercial cream (SN) and diabetic treated with 50mg/kg of P.betel extract (PB). The rats were sacrificed on day 0 and 5 post wounding. Significant increased in wound closure rate, body weight was observed in PB group compared to ND. Histological deterioration was restored in the P. betel extract treated wounds. It is concluded that topical application with P.betel extract for 5 days of post wounding offers positive scientific value in diabetic rats.

Keywords: diabetes, piper betel, wound healing, body weight, morphology

Procedia PDF Downloads 543
4504 Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples

Authors: Saifullah Karimullah

Abstract:

Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between.

Keywords: additive manufacturing techniques, 3D printing, CAD software, UTM machine

Procedia PDF Downloads 95
4503 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 312
4502 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

Authors: Mondher Yahyaoui

Abstract:

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection

Procedia PDF Downloads 431
4501 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 295
4500 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand

Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk

Abstract:

Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.

Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment

Procedia PDF Downloads 121
4499 Evaluation of the UV Stability of Unidirectional Crossply Ultrahigh-Molecular-Weight-Polyethylene Composite

Authors: Jonmichael Weaver, David Miller

Abstract:

Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber created by DSM. This fiber has many applications due to the high tensile strength, low weight, and inability to absorb water. DSM manufactures a non-woven unidirectional cross-ply [0,90]2 lamina, using the Dyneema fiber. Using this lamina system, various thickness panels are created for a 40% lighter weight alternative to Kevlar for the same ballistics protection. Environmental effects on the ply/laminate system alter the material properties, resulting in diminished ultimate performance. Understanding the specific environmental parameters and characterizing the resulting material property degradation is essential for determining the safety and reliability of Dyneema in service. Two laminas were contrasted for their response to accelerated aging by UV, humidity, and temperature cycling. Both lamina contain the same fiber, SK-99, but differ in matrix composition, Dyneema HB-210 employs a polyurethane (PUR) based matrix, and HB-212 contains a rubber-based matrix. Each system was inspected using a scanning electron microscope (SEM) and evaluated by dynamic mechanical analysis (DMA) to characterize the material property changes alongside the corresponding composite damage and matrix failure mode over the aging parameters. Overall, resulting in the HB-212 degrading faster compared with the HB-210.

Keywords: dyneema, accelerated aging, polymers, ballistics protection, armor, DSM, kevlar, composites

Procedia PDF Downloads 144
4498 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding

Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang

Abstract:

As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.

Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis

Procedia PDF Downloads 25
4497 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels

Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He

Abstract:

The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.

Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure

Procedia PDF Downloads 131
4496 Closing the Assessment Loop: Case Study in Improving Outcomes for Online College Students during Pandemic

Authors: Arlene Caney, Linda Fellag

Abstract:

To counter the adverse effect of Covid-19 on college student success, two faculty members at a US community college have used web-based assessment data to improve curricula and, thus, student outcomes. This case study exemplifies how “closing the loop” by analyzing outcome assessments in real time can improve student learning for academically underprepared students struggling during the pandemic. The purpose of the study was to develop ways to mitigate the negative impact of Covid-19 on student success of underprepared college students. Using the Assessment, Evaluation, Feedback and Intervention System (AEFIS) and other assessment tools provided by the college’s Office of Institutional Research, an English professor and a Music professor collected data in skill areas related to their curricula over four semesters, gaining insight into specific course sections and learners’ performance across different Covid-driven course formats—face-to-face, hybrid, synchronous, and asynchronous. Real-time data collection allowed faculty to shorten and close the assessment loop, and prompted faculty to enhance their curricula with engaging material, student-centered activities, and a variety of tech tools. Frequent communication, individualized study, constructive criticism, and encouragement were among other measures taken to enhance teaching and learning. As a result, even while student success rates were declining college-wide, student outcomes in these faculty members’ asynchronous and synchronous online classes improved or remained comparable to student outcomes in hybrid and face-to-face sections. These practices have demonstrated that even high-risk students who enter college with remedial level language and mathematics skills, interrupted education, work and family responsibilities, and language and cultural diversity can maintain positive outcomes in college across semesters, even during the pandemic.

Keywords: AEFIS, assessment, distance education, institutional research center

Procedia PDF Downloads 85
4495 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 371
4494 Characterization and Analysis of Airless Tire in Mountain Cycle

Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy

Abstract:

Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.

Keywords: airless tire, diamond structure, honeycomb structure, deformation

Procedia PDF Downloads 71
4493 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza

Abstract:

SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software

Procedia PDF Downloads 341
4492 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.

Keywords: electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites

Procedia PDF Downloads 414
4491 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure

Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi

Abstract:

With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.

Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance

Procedia PDF Downloads 161