Search results for: power distance
5895 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics
Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang
Abstract:
A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery
Procedia PDF Downloads 1835894 Ultra-Low NOx Combustion Technology of Liquid Fuel Burner
Authors: Sewon Kim, Changyeop Lee
Abstract:
A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel.Keywords: burner, low NOx, liquid fuel, partial oxidation
Procedia PDF Downloads 3455893 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques
Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair
Abstract:
Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting
Procedia PDF Downloads 3595892 Development the Sensor Lock Knee Joint and Evaluation of Its Effect on Walking and Energy Consumption in Subjects With Quadriceps Weakness
Authors: Mokhtar Arazpour
Abstract:
Objectives: Recently a new kind of stance control knee joint has been developed called the 'sensor lock.' This study aimed to develop and evaluate 'sensor lock', which could potentially solve the problems of walking parameters and gait symmetry in subjects with quadriceps weakness. Methods: Nine subjects with quadriceps weakness were enrolled in this study. A custom-made knee ankle foot orthosis (KAFO) with the same set of components was constructed for each participant. Testing began after orthotic gait training was completed with each of the KAFOs and subjects demonstrated that they could safely walk with crutches. Subjects rested 30 minutes between each trial. The 10 meters walking test is used to assess walking speed in meters/second (m/s). The total time taken to ambulate 6 meters (m) is recorded to the nearest hundredth of a second. 6 m is then divided by the total time (in seconds) taken to ambulate and recorded in m/s. The 6 Minutes Walking Test was used to assess walking endurance in this study. Participants walked around the perimeter of a set circuit for a total of six minutes. To evaluate Physiological cost index (PCI), the subjects were asked to walk using each type of KAFOs along a pre-determined 40 m rectangular walkway at their comfortable self-selected speed. A stopwatch was used to calculate the speed of walking by measuring the time between starting and stopping time and the distance walked. Results: The use of a KAFO fitted with the “sensor lock” knee joint resulted in improvements to walking speed, distance walked and physiological cost index when compared with the knee joint in lock mode. Conclusions: This study demonstrated that the use of a KAFO with the “sensor lock” knee joint could provide significant benefits for subjects with a quadriceps weakness when compared to a KAFO with the knee joint in lock mode.Keywords: stance control knee joint, knee ankle foot orthosis, quadriceps weakness, walking, energy consumption
Procedia PDF Downloads 1285891 Monte Carlo Risk Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gases, power plants
Procedia PDF Downloads 4735890 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency
Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee
Abstract:
Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system
Procedia PDF Downloads 4365889 Experimental Activity on the Photovoltaic Effect
Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas
Abstract:
In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.Keywords: experiments, irradiation law, physic teaching, photovoltaic effect
Procedia PDF Downloads 855888 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation
Authors: Akhil Teja Kambhampati, Mark A. Hoffman
Abstract:
In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols
Procedia PDF Downloads 445887 Validation Study of Radial Aircraft Engine Model
Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski
Abstract:
This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.Keywords: 1D-model, aircraft engine, performance, validation
Procedia PDF Downloads 3385886 Scaling-Down an Agricultural Waste Biogas Plant Fermenter
Authors: Matheus Pessoa, Matthias Kraume
Abstract:
Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum
Procedia PDF Downloads 4965885 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 965884 Sustainable Electricity Generation Mix for Kenya from 2015 to 2035
Authors: Alex Maina, Mwenda Makathimo, Adwek George, Charles Opiyo
Abstract:
This research entails the simulation of three possible power scenarios for Kenya from 2015 to 2035 using the Low Emissions Analysis Platform (LEAP). These scenarios represent the unfolding future electricity generation that will fully satisfy the demand while considering the following: energy security, power generation cost and impacts on the environment. These scenarios are Reference Scenario (RS), Nuclear Scenario (NS) and More Renewable Scenario (MRS). The findings obtained reveals that the most sustainable scenario while comparing the costs was found to be the coal scenario with a Net Present Value (NPV) of $30,052.67 million though it has the highest Green House Gases (GHGs) emissions. However, the More Renewable Scenario (MRS) had the least GHGs emissions but was found to be a most expensive scenario to implement with an NPV of $30,733.07 million.Keywords: energy security, Kenya, low emissions analysis platform, net-present value, greenhouse gases
Procedia PDF Downloads 1025883 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks
Abstract:
The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change
Procedia PDF Downloads 1875882 Surface Modification of Titanium Alloy with Laser Treatment
Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan
Abstract:
The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.Keywords: bonding strength, laser surface treatment, PEKK, poly-ether-ketone-ketone, titanium alloy
Procedia PDF Downloads 3395881 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis
Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr
Abstract:
In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response
Procedia PDF Downloads 7955880 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process
Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah
Abstract:
Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation
Procedia PDF Downloads 3445879 Comparison of the Performance of Diesel Engine, Run with Diesel and Safflower Oil Methyl Esters, Using a Piston Which Has Five Grooves on Its Crown
Authors: N. Hiranmai, M. L. S. Deva Kumar
Abstract:
In this project, it is planned to carry out an experimental investigation on 4- stroke Direct Injection Diesel Engine, which is a single-cylinder, four-stroke, water-cooled, and constant speed engine capable of developing a power output of 3.7 kW at 1500 rpm, run with diesel fuel and also with different proportions of Safflower oil methyl esters, with a piston having five number of grooves on its crown to create turbulence. Various performance parameters, such as brake power, specific fuel consumption, and thermal efficiency, are calculated. At all the load conditions, the performance of the engine is obtained better for blend B40 (40% Safflower oil + 60% of Diesel). At different load conditions, Brake thermal Efficiency (ηbth) is comparatively more for all blends than that for Diesel. At different load conditions, ηith is less for blend B40.Keywords: four-stroke engine, diesel, safflower oil, engine performance, emissions.
Procedia PDF Downloads 1035878 Calculus of Turbojet Performances for Ideal Case
Authors: S. Bennoud, S. Hocine, H. Slme
Abstract:
Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets. Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation. The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling. The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.Keywords: brayton cycle, turbine blades cooling, turbojet cycle, turbojet performances
Procedia PDF Downloads 2235877 Geared Turbofan with Water Alcohol Technology
Authors: Abhinav Purohit, Shruthi S. Pradeep
Abstract:
In today’s world, aviation industries are using turbofan engines (permutation of turboprop and turbojet) which meet the obligatory requirements to be fuel competent and to produce enough thrust to propel an aircraft. But one can imagine increasing the work output of this particular machine by reducing the input power. In striving to improve technologies, especially to augment the efficiency of the engine with some adaptations, which can be crooked to new concepts by introducing a step change in the turbofan engine development. One hopeful concept is, to de-couple the fan with the help of reduction gear box in a two spool shaft engine from the rest of the machinery to get more work output with maximum efficiency by reducing the load on the turbine shaft. By adapting this configuration we can get an additional degree of freedom to better optimize each component at different speeds. Since the components are running at different speeds we can get hold of preferable efficiency. Introducing water alcohol mixture to this concept would really help to get better results.Keywords: emissions, fuel consumption, more power, turbofan
Procedia PDF Downloads 4395876 Evaluation of Antioxidants in Medicinal plant Limoniastrum guyonianum
Authors: Assia Belfar, Mohamed Hadjadj, Messaouda Dakmouche, Zineb Ghiaba
Abstract:
Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The acetonic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (0.9425 %to 11.131%). The total phenolic content ranged from 53.33 mg GAE/g DW to 672.79 mg GAE/g DW. The total flavonoid concentrations varied from 5.45 to 21.71 mg/100g. IC50 values ranged from 0.02 ± 0.0004 to 0.13 ± 0.002 mg/ml. All extracts showed very good activity of ferric reducing power, the higher power was in butanol fraction (23.91 mM) more effective than BHA, BHT and VC. Conclusions: Demonstrated this study that the acetonic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. Can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in the pharmaceutical industry.Keywords: limoniastrum guyonianum, phenolics compounds, flavonoid compound, antioxidant activity
Procedia PDF Downloads 3505875 Sustainable Connectivity: Power-Line Communications for Home Automation in Ethiopia
Authors: Tsegahun Milkesa
Abstract:
This study investigates the implementation of Power-Line Communications (PLC) as a sustainable solution for home automation in Ethiopia. With the country's growing technological landscape and the quest for efficient energy use, this research explores the potential of PLC to facilitate smart home systems, aiming to enhance connectivity and energy management. The primary objective is to assess the feasibility and effectiveness of PLC in Ethiopian residences, considering factors such as infrastructure compatibility, reliability, and scalability. By analyzing existing PLC technologies and their adaptability to local contexts, this study aims to propose optimized solutions tailored to the Ethiopian environment. The research methodology involves a combination of literature review, field surveys, and experimental setups to evaluate PLC's performance in transmitting data and controlling various home appliances. Additionally, socioeconomic implications, including affordability and accessibility, are examined to ensure the technology's inclusivity in diverse Ethiopian households. The findings will contribute insights into the viability of PLC for sustainable connectivity in Ethiopian homes, shedding light on its potential to revolutionize energy-efficient and interconnected living spaces. Ultimately, this study seeks to pave the way for accessible and eco-friendly smart home solutions in Ethiopia, aligning with the nation's aspirations for technological advancement and sustainability.Keywords: sustainable connectivity, power-line communications (PLC), home automation, Ethiopia, smart homes, energy efficiency, connectivity solutions, infrastructure development, sustainable living
Procedia PDF Downloads 805874 Amplification of electromagnetic pulse by conducting cone
Authors: E. S. Manuylovich, V. A. Astapenko, P. A. Golovinsky
Abstract:
The dispersion relation binding the constant of propagation and frequency is calculated for silver cone. The evolution of the electric field of ultrashort pulse during its propagation in conical structure is considered. Increasing of electric field during pulse propagation to the top of the cone is observed. Reduction of the pulse duration at a certain distance is observed. The dependence of minimum pulse duration on initial chirp and cone angle is investigated.Keywords: ultrashort pulses, surface plasmon polariton, dispersion, silver cone
Procedia PDF Downloads 4385873 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon
Authors: Alex Ellery
Abstract:
Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering
Procedia PDF Downloads 4275872 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 5005871 Social Economical Aspect of the City of Kigali Road Network Functionality
Authors: David Nkurunziza, Rahman Tafahomi
Abstract:
The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities
Procedia PDF Downloads 1645870 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes
Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far
Abstract:
Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors
Procedia PDF Downloads 3175869 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Ahmed Bakry, Moustafa Ahmed
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser
Procedia PDF Downloads 6455868 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators
Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy
Abstract:
Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network
Procedia PDF Downloads 6405867 Impact of Transportation on Access to Reproductive and Maternal Health Services in Northeast Cambodia: A Policy Brief
Authors: Zaman Jawahar, Anne Rouve-Khiev, Elizabeth Hoban, Joanne Williams
Abstract:
Ensuring access to timely obstetric care is essential to prevent maternal deaths. Geographical barriers pose significant challenges for women accessing quality reproductive and maternal health services in rural Cambodia. This policy brief affirms the need to address the issue of transportation and cost (direct and indirect) as critical barriers to accessing reproductive and maternal health (RMH) services in four provinces in Northeast Cambodia (Kratie, Ratanak Kiri, Mondul Kiri, Stung Treng). A systemic search of the literature identified 1,116 articles, and only ten articles from low-and-middle-income countries met the inclusion criteria. The ten articles reported on transportation and cost related to accessing RMH services. In addition, research findings from Partnering to Save Lives (PSL) studies in the four provinces were included in the analysis. Thematic data analysis using the information in the ten articles and PSL research findings was conducted, and the findings are presented in this paper. The key findings are the critical barriers to accessing RMH services in the four provinces because women experience: 1) difficulties finding affordable transportation; 2) lack of available and accessible transportation; 3) greater distance and traveling time to services; 4) poor geographical terrain and; 5) higher opportunity costs. Distance and poverty pose a double burden for the women accessing RMH services making a facility-based delivery less feasible compared to home delivery. Furthermore, indirect and hidden costs associated with institutional delivery may have an impact on women’s decision to seek RMH care. Existing health financing schemes in Cambodia such as the Health Equity Fund (HEF) and the Voucher Scheme contributed to the solution but have also shown some limitations. These schemes contribute to improving access to RMH services for the poorest group, but the barrier of transportation costs remains. In conclusion, initiatives that are proven to be effective in the Cambodian context should continue or be expanded in conjunction with the HEF, and special consideration should be given to communities living in geographically remote regions and difficult to access areas. The following strategies are recommended: 1) maintain and further strengthen transportation support in the HEF scheme; 2) expand community-based initiatives such as Community Managed Health Equity Funds and Village Saving Loans Associations; 3) establish maternity waiting homes; and 4) include antenatal and postnatal care in the provision of integrated outreach services. This policy brief can be used to inform key policymakers and provide evidence that can assist them to develop strategies to increase poor women’s access to RMH services in low-income settings, taking into consideration the geographic distance and other indirect costs associated with a facility-based delivery.Keywords: access, barriers, northeast Cambodia, reproductive and maternal health service, transportation and cost
Procedia PDF Downloads 1445866 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach
Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk
Abstract:
Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.Keywords: basketball, metabolomics, saliva, sport loadomics
Procedia PDF Downloads 119