Search results for: beeswax-discharge writing material
5174 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles
Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty
Abstract:
It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles
Procedia PDF Downloads 1505173 System for Mechanical Stimulation of the Mesenchymal Stem Cells Supporting Differentiation into Osteogenic Cells
Authors: Jana Stepanovska, Roman Matejka, Jozef Rosina, Marta Vandrovcova, Lucie Bacakova
Abstract:
The aim of this study was to develop a system for mechanical and also electrical stimulation controlling in vitro osteogenesis under conditions more similar to the in vivo bone microenvironment than traditional static cultivation, which would achieve good adhesion, growth and other specific behaviors of osteogenic cells in cultures. An engineered culture system for mechanical stimulation of the mesenchymal stem cells on the charged surface was designed. The bioreactor allows efficient mechanical loading inducing an electrical response and perfusion of the culture chamber with seeded cells. The mesenchymal stem cells were seeded to specific charged materials, like polarized hydroxyapatite (Hap) or other materials with piezoelectric and ferroelectric features, to create electrical potentials for stimulating of the cells. The material of the matrix was TiNb alloy designed for these purposes, and it was covered by BaTiO3 film, like a kind of piezoelectric material. The process of mechanical stimulation inducing electrical response is controlled by measuring electrical potential in the chamber. It was performed a series of experiments, where the cells were seeded, perfused and stimulated up to 48 hours under different conditions, especially pressure and perfusion. The analysis of the proteins expression was done, which demonstrated the effective mechanical and electrical stimulation. The experiments demonstrated effective stimulation of the cells in comparison with the static culture. This work was supported by the Ministry of Health, grant No. 15-29153A and the Grant Agency of the Czech Republic grant No. GA15-01558S.Keywords: charged surface, dynamic cultivation, electrical stimulation, ferroelectric layers, mechanical stimulation, piezoelectric layers
Procedia PDF Downloads 2995172 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods
Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho
Abstract:
Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator
Procedia PDF Downloads 1605171 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder
Authors: Jun-Lun Jiang, Bing-Sheng Yu
Abstract:
Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method
Procedia PDF Downloads 2725170 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals
Procedia PDF Downloads 1035169 Adhesion of Staphylococcus epidermidis and Staphylococcus aureus to Intravascular cannulae
Authors: Ghadah Abusalim, Suliman Alharbi, Hesham Khalil, Milton Wainwright, Mohammad A. Khiyami
Abstract:
The use of implantable foreign devices in medicine has recently increased dramatically. Intravascular cannulae and catheters are used to administer fluids, medications, parenteral nutrition, and blood products in order to monitor hemodynamic status and also to provide hemodialysis. The early and late failure of inserted or implanted devices is largely the result of bacterial infection and may lead to the disruption of integration between the device and the tissues which surround it. Staphylococcus aureus and Staphylococcus epidermidis are widely considered to be the most common organisms causing device-related infection. Our study showed that S. aureus and S. epidermidis adhered to intravascular cannulae made up of PTFE, SPTFE and vialon. Adhesion of S. epidermidis and S. aureus to intravascular cannulae varied significantly depending upon the type of material used and the presence of coating materials. Both bacteria adhered less to PTFE followed by Vialon and SPTFE and the adhesion capacity of S. aureus and S. epidermidis increased over time. Coating intravascular cannulae with human serum albumin inhibited the adhesion of S. aureus and S. epidermidis to these cannulae, and pretreatment of cannulae with fibronectin inhibited the adhesion of S. epidermidis but increased the adhesion of S. aureus to all types of cannulae. Pretreatment of cannulae surface with potassium chloride or calcium chloride increased the adhesion of S. aureus and S. epidermidis to cannulae, suggesting a role for electrostatic forces in the mechanism of such adhesion. This study will hopefully clarify the mechanism of adhesion and provide possible means of preventing such adhesion either by the use of better material coatings or by interfering with the process of adhesion by targeting bacterial structures responsible for it. Currently we recommend the use of PTFE cannulae as they exhibit a lower bacterial adhesion capacity compared to the other tested cannulae.Keywords: Staphylococcus epidermidis, Staphylococcus aureus, adhesion, cannulae, PTFE, Vialon
Procedia PDF Downloads 3485168 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide
Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz
Abstract:
In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide
Procedia PDF Downloads 1665167 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc
Abstract:
Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.Keywords: numerical model, additive manufacturing, friction, process
Procedia PDF Downloads 1475166 Brokerage and Value-Creation: Trading Practices in the English Market of 20th-Century Maps
Authors: Shaun Lim
Abstract:
This paper presents a 9-month ethnographic case study of the value creating strategies employed by an Oxford market-trader of 20th-century maps. Maps are usually valued and sold as either antique objets d’art or useful navigational tools, with 20th-century maps precariously lying between the boundary of the aesthetic and utilitarian value-regimes. Here, the brokerage practices involved in the framing of outdated, lowly valued maps into vintage commodities will be examined. Ethnographic material of the unstudied market of old maps is introduced and situated in the second-hand, antique and collectible spheres of exchange. The map-trader as a broker is the ethnographic and methodological starting point of this paper. Brokerage is understood through the activity of framing that defines and brackets the value-regimes of commodities with the aid of market and framing devices. The trader’s activities will be examined in three parts. (1) The post-sourcing industry: the altering, mounting and tagging of maps before putting them into market circulation. Mounts, frames and tags are seen as market devices that authenticates and frames maps with aesthetic and symbolic values along with the disentanglement of its use value. (2) The market-display: the constitution of space that encourages the relations of looking at maps as aesthetic objects, while the categorical arrangement of the display contributes to legitimising of the collectability of maps. (3) The salesmanship strategies of the trader: the match-making of customers with maps of meaningful value, and the mediating of knowledge through the verbal articulation of the map’s symbolic values. Ultimately, value is not created in an accumulative sense, but is layered and superimposed to cater to a wide spectrum of patrons. The trader creates demand for his goods by mediating and articulating value-regimes already coherent to potential patrons.Keywords: art and material culture, brokerage, commodification, framing, markets, value
Procedia PDF Downloads 1465165 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 1225164 Efficacy of Learning: Digital Sources versus Print
Authors: Rahimah Akbar, Abdullah Al-Hashemi, Hanan Taqi, Taiba Sadeq
Abstract:
As technology continues to develop, teaching curriculums in both schools and universities have begun adopting a more computer/digital based approach to the transmission of knowledge and information, as opposed to the more old-fashioned use of textbooks. This gives rise to the question: Are there any differences in learning from a digital source over learning from a printed source, as in from a textbook? More specifically, which medium of information results in better long-term retention? A review of the confounding factors implicated in understanding the relationship between learning from the two different mediums was done. Alongside this, a 4-week cohort study involving 76 1st year English Language female students was performed, whereby the participants were divided into 2 groups. Group A studied material from a paper source (referred to as the Print Medium), and Group B studied material from a digital source (Digital Medium). The dependent variables were grading of memory recall indexed by a 4 point grading system, and total frequency of item repetition. The study was facilitated by advanced computer software called Super Memo. Results showed that, contrary to prevailing evidence, the Digital Medium group showed no statistically significant differences in terms of the shift from Remember (Episodic) to Know (Semantic) when all confounding factors were accounted for. The shift from Random Guess and Familiar to Remember occurred faster in the Digital Medium than it did in the Print Medium.Keywords: digital medium, print medium, long-term memory recall, episodic memory, semantic memory, super memo, forgetting index, frequency of repetitions, total time spent
Procedia PDF Downloads 2895163 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents
Authors: A. Kesraoui, M. Seffen
Abstract:
Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.Keywords: adsorption, alternating current, dyes, modeling
Procedia PDF Downloads 1605162 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 3615161 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders
Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai
Abstract:
Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling
Procedia PDF Downloads 2835160 Forecasting Materials Demand from Multi-Source Ordering
Authors: Hui Hsin Huang
Abstract:
The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.Keywords: recency, ordering time, materials demand quantity, multi-source ordering
Procedia PDF Downloads 5345159 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept
Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia
Abstract:
The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol
Procedia PDF Downloads 1715158 Crack Size and Moisture Issues in Thermally Modified vs. Native Norway Spruce Window Frames: A Hygrothermal Simulation Study
Authors: Gregor Vidmar, Rožle Repič, Boštjan Lesar, Miha Humar
Abstract:
The study investigates the impact of cracks in surface coatings on moisture content (MC) and related fungal growth in window frames made of thermally modified (TM) and native Norway spruce using hygrothermal simulations for Ljubljana, Slovenia. Comprehensive validation against field test data confirmed the numerical model's predictions, demonstrating similar trends in MC changes over the investigated four years. Various established mould growth models (isopleth, VTT, bio hygrothermal) did not appropriately reflect differences between the spruce types because they do not consider material moisture content, leading to the main conclusion that TM spruce is more resistant to moisture-related issues. Wood's MC influences fungal decomposition, typically occurring above 25% - 30% MC, with some fungi growing at lower MC under conducive conditions. Surface coatings cannot wholly prevent water penetration, which becomes significant when the coating is damaged. This study investigates the detrimental effects of surface coating cracks on wood moisture absorption, comparing TM spruce and native spruce window frames. Simulations were conducted for undamaged and damaged coatings (from 1 mm to 9 mm wide cracks) on window profiles as well as for uncoated profiles. Sorption curves were also measured up to 95% of the relative humidity. MC was measured in the frames exposed to actual climatic conditions and compared to simulated data for model validation. The study utilizes a simplified model of the bottom frame part due to convergence issues with simulations of the whole frame. TM spruce showed about 4% lower MC content compared to native spruce. Simulations showed that a 3 mm wide crack in native spruce coatings for the north orientation poses significant moisture risks, while a 9 mm wide crack in TM spruce coatings remains acceptable furthermore in the case of uncoated TM spruce could be acceptable. In addition, it seems that large enough cracks may cause even worse moisture dynamics compared to uncoated native spruce profiles. The absorption curve comes out to be the far most influential parameter, and the next one is density. Existing mould growth models need to be upgraded to reflect wood material differences accurately. Due to the lower sorption curve of TM spruce, in reality, higher RH values are obtained under the same boundary conditions, which implies a more critical situation according to these mould growth models. Still, it does not reflect the difference in materials, especially under external exposure conditions. Even if different substrate categories in the isopleth and bio-hygrothermal model or different sensitivity material classes for standard and TM wood are used, it does not necessarily change the expected trends; thus, models with MC being the inherent part of the models should be introduced. Orientation plays a crucial role in moisture dynamics. Results show that for similar moisture dynamics, for Norway spruce, the crack could be about 2 mm wider on the south than on the north side. In contrast, for TM spruce, orientation isn't as important, compared to other material properties. The study confirms the enhanced suitability of TM spruce for window frames in terms of moisture resistance and crack tolerance in surface coatings.Keywords: hygrothermal simulations, mould growth, surface coating, thermally modified wood, window frame
Procedia PDF Downloads 345157 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys
Authors: Gulcan Ozerim, Gunay Anlas
Abstract:
In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.Keywords: crack, HRR singularity, shape memory alloys, stress distribution
Procedia PDF Downloads 3255156 Investigating Students' Understanding about Mathematical Concept through Concept Map
Authors: Rizky Oktaviana
Abstract:
The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.Keywords: concept map, concept mapping, mathematical concepts, understanding
Procedia PDF Downloads 2715155 The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region
Authors: Hamidreza Mehrabi, Mandana Rezayee
Abstract:
The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance.Keywords: seed coating, soil moisture, sowing depth, germination percentage
Procedia PDF Downloads 2745154 Changes on Some Physical and Chemical Properties of Red Beetroot Juice during Ultrasound Pretreatment
Authors: Serdal Sabanci, Mutlu Çevik, Derya Tezcan, Cansu Çelebi, Filiz Içier
Abstract:
Ultrasound is defined as sound waves having frequencies higher than 20 kHz, which is greater than the limits of the human hearing range. In recent years, ultrasonic treatment is an emerging technology being used increasingly in the food industry. It is applied as an alternative technique for different purposes such as microbial and enzyme inactivation, extraction, drying, filtration, crystallization, degas, cutting etc. Red beetroot (Beta vulgaris L.) is a root vegetable which is rich in mineral components, folic acid, dietary fiber, anthocyanin pigments. In this study, the application of low frequency high intensity ultrasound to the red beetroot slices and red beetroot juice for different treatment times (0, 5, 10, 15, 20 min) was investigated. Ultrasonicated red beetroot slices were also squeezed immediately. Changes on colour, betanin, pH and titratable acidity properties of red beetroot juices (the ultrasonicated juice (UJ) and the juice from ultrasonicated slices (JUS)) were determined. Although there was no significant difference statistically in the changes of color value of JUS samples due to ultrasound application (p>0.05), the color properties of UJ samples ultrasonicated for low durations were statistically different from raw material (p<0.05). The difference between color values of UJ and raw material disappeared (p>0.05) as the ultrasonication duration increased. The application of ultrasound to red beet root slices adversely affected and decreased the betanin content of JUS samples. On the other hand, the betanin content of UJ samples increased as the ultrasonication duration increased. Ultrasound treatment did not affect pH and titratable acidity of red beetroot juices statistically (p>0.05). The results suggest that ultrasound technology is the simple and economical technique which may successfully be employed for the processing of red beetroot juice with improved color and betanin quality. However, further investigation is still needed to confirm this.Keywords: red beetroot, ultrasound, color, betanin
Procedia PDF Downloads 3995153 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations
Authors: Reza Soleimanpour, Ching Tai Ng
Abstract:
Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves
Procedia PDF Downloads 2045152 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates
Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen
Abstract:
Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.Keywords: accounting practitioners, communication skills, distance education, pervasive skills
Procedia PDF Downloads 2045151 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials
Authors: D. Kliaugaitė, J. K, Staniškis
Abstract:
In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate
Procedia PDF Downloads 3625150 Cracking Performance of Bituminous Concrete Mixes Containing High Percentage of RAP Material
Authors: Bicky Agarwal, Ambika Behl, Rajiv Kumar, Ashish Dhamaniya
Abstract:
India ranks second for having the largest road network in the world after the United States (U.S.). According to the National Asphalt Pavement Association (NAPA), the U.S. produced about 94.6 million tons of Reclaimed Asphalt Pavement (RAP) in 2021. Despite the benefits of RAP usage, it is not widely adopted in many countries, including India. Rising asphalt binder costs and environmental concerns have spurred interest in using RAP material in asphalt mixtures. However, increasing RAP content may have adverse effects on certain characteristics of asphalt mixtures, such as cracking resistance. Cracking is a common pavement issue that affects the lifespan and durability of hot-mix asphalt pavements. Assessing cracking resistance is crucial in pavement design. Various laboratory tests and performance indicators are utilized to evaluate cracking resistance. This study aims to use the Texas Overlay Tester (TOT) to assess the impact of reclaimed asphalt pavement (RAP) on the cracking resistance of Bituminous Concrete (BC-II) mixes. Following the Marshall Mix Design method, asphalt mixes with RAP contents of 0% (Control), 30%, 40%, 50%, and 60% were prepared and tested at their Optimum Binder Content (OBC). The ITS results showed that the control mix had an ITS value of 1.2 MPa, with slight decreases observed in mixes containing up to 60% RAP, although these changes were not statistically significant (p=0.538>0.05). The TSR tests indicated that all mixes exceeded the minimum requirement of 80%. The Texas Overlay Test (TOT) was used to evaluate cracking performance and revealed that higher RAP contents had a negative impact on fatigue resistance. The 50% RAP mix exhibited the highest CFE, indicating that it has the best resistance to crack propagation despite having a lower number of cycles to failure. All mixes were categorized as falling into the Soft-crack-resistant quadrant, indicating their ability to resist crack propagation while being more susceptible to crack initiation.Keywords: RAP, BC-II, HMA, TOT
Procedia PDF Downloads 315149 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 1605148 A Comprehensive Approach to Sustainable Building Design: Bridging Design for Adaptability and Circular Economy with LCA
Authors: Saba Baienat, Ivanka Iordanova, Bechara Helal
Abstract:
Incorporating the principles of Design for Adaptability (DfAd) and Circular Economy (CE) into the service life planning of buildings and construction engineering projects can significantly enhance sustainable development. By employing DfAd, both the service life and design process can be optimized, gradually postponing the building’s End of Life (EoL) and extending the service life of buildings, thereby closing material cycles and making them more circular. This paper presents a comprehensive framework that addresses adaptability strategies and considerations to objectively assess the role of DfAd in circularity. The framework aims to provide a streamlined approach for accessing DfAd strategies and identifying the most effective ones for enhancing a project's adaptability. Key strategies include anticipating changes in requirements, enabling adaptations and transformations of the building for better use and reuse, preparing for future lives of the building and its components, and contributing to the circular material life cycle. Furthermore, the framework seeks to enhance the awareness of stakeholders about the subject of Design for Adaptability through the lens of the Circular Economy. Additionally, this paper integrates Life Cycle Assessment (LCA) methodologies to evaluate the environmental impacts of implementing DfAd strategies within the context of the Circular Economy. By utilizing LCA, the framework provides a quantitative basis for assessing the sustainability benefits of adaptable building designs, offering insights into how these strategies can minimize resource consumption, reduce emissions, and enhance overall environmental performance. This holistic approach underscores the critical role of LCA in bridging DfAd and CE, ultimately fostering more resilient and sustainable construction practices.Keywords: circular economy (CE), design for adaptability (DfAd), life cycle assessment (LCA), sustainable development
Procedia PDF Downloads 335147 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao
Abstract:
Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.Keywords: AlN/GaN, HEMT, MBE, homoepitaxy
Procedia PDF Downloads 965146 An Audit of Restaging Transurethral Resection of Bladder Tumor (Re-TURBT) Quality in a District General Hospital
Authors: Rizwan Iqbal
Abstract:
Introduction: Re-TURBT has been recommended by international guidelines for patients with non-muscle invasive bladder cancer (NMIBC) who are deemed high-risk. Indications for re-TURBTs remain controversial and studies show mixed outcomes. It should be performed when the initial TURBT specimen lacks detrusor muscle, has tumor stage pT1 or G3/high-grade, or where resection is deemed incomplete. This ensures complete resection of tumors that have a high risk of recurrence as well as accurately identifying any tumors which have been upstaged. The aim of this audit was to evaluate the quality of re-TURBTs in a district general hospital. Method: Data were retrospectively collected from 31 patients who had re-TURBTs between April 2021 and September 2022. Data included baseline demographics, time from initial to re-TURBT, quality of operation note, presence of residual tumor, complications, and administration of chemotherapy within 24 hours of the initial TURBT. Data collection remains ongoing at the time of writing. Results: The mean age was 76 years old and 71.0% of patients were male. 32.3% of patients had their re-TURBT within six weeks and 32.3% had intravesical chemotherapy administered within 24 hours of the initial TURBT. 74.2% of initial TURBTs had detrusor muscle present in the specimen. 48.4% of patients had residual disease following re-TURBT. Just one patient had their pathology upstaged at re-TURBT. The use of the TURBT proforma on the operation note was variable, with 51.6% and 38.7% of surgeons using the proforma after the initial and re-TURBT. Conclusion: Re-TURBT improves bladder cancer staging and is necessary in patients who are deemed high-risk in order to identify any upstaging or recurrence of the disease.Keywords: urology, bladder cancer, turbt, cancer
Procedia PDF Downloads 625145 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime
Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo
Abstract:
When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.Keywords: lateritic soils, sand, cement, stabilization, road pavement
Procedia PDF Downloads 90