Search results for: statistical data
24877 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework
Authors: Abbas Raza Ali
Abstract:
Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation
Procedia PDF Downloads 18124876 Programming with Grammars
Authors: Peter M. Maurer Maurer
Abstract:
DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation
Procedia PDF Downloads 15124875 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses
Authors: Ouzayr Rabhi, Ibtissam Arrassen
Abstract:
To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML
Procedia PDF Downloads 16524874 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle
Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito
Abstract:
Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks
Procedia PDF Downloads 7324873 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 14024872 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 33324871 The Relation between the Organizational Trust Level and Organizational Justice Perceptions of Staff in Konya Municipality: A Theoretical and Empirical Study
Authors: Handan Ertaş
Abstract:
The aim of the study is to determine the relationship between organizational trust level and organizational justice of Municipality officials. Correlational method has been used via descriptive survey model and Organizational Justice Perception Scale, Organizational Trust Inventory and Interpersonal Trust Scale have been applied to 353 participants who work in Konya Metropolitan Municipality and central district municipalities in the study. Frequency as statistical method, Independent Samples t test for binary groups, One Way-ANOVA analyses for multi-groups and Pearson Correlation analysis have been used to determine the relation in the data analysis process. It has been determined in the outcomes of the study that participants have high level of organizational trust, “Interpersonal Trust” is in the first place and there is a significant difference in the favor of male officials in terms of Trust on the Organization Itself and Interpersonal Trust. It has also been understood that officials in district municipalities have higher perception level in all dimensions, there is a significant difference in Trust on the Organization sub-dimension and work status is an important factor on organizational trust perception. Moreover, the study has shown that organizational justice implementations are important in raising trust of official on the organization, administrator and colleagues, and there is a parallel relation between Organizational Trust components and Organizational Trust dimensions.Keywords: organizational trust level, organizational justice perceptions, staff, Konya
Procedia PDF Downloads 35124870 Impact of Individual and Neighborhood Social Capital on the Health Status of the Pregnant Women in Riyadh City, Saudi Arabia
Authors: Abrar Almutairi, Alyaa Farouk, Amal Gouda
Abstract:
Background: Social capital is a factor that helps in bonding in a social network. The individual and the neighborhood social capital affect the health status of members of a particular society. In addition, to the influence of social health on the health of the population, social health has a significant effect on women, especially those with pregnancy. Study objective was to assess the impact of the social capital on the health status of pregnant women Design: A descriptive crosssectional correlational design was utilized in this study. Methods: A convenient sample of 210 pregnant women who attended the outpatient antenatal clinicsfor follow-up in King Fahad hospital (Ministry of National Guard Health Affairs/Riyadh) and King Abdullah bin Abdelaziz University Hospital (KAAUH, Ministry of Education /Riyadh) were included in the study. Data was collected using a self-administered questionnaire that was developed by the researchers based on the “World Bank Social Capital Assessment Tool” and SF-36 questionnaire (Short Form Health Survey). The questionnaire consists of 4 parts to collect information regarding socio-demographic data, obstetric and gynecological history, general scale of health status and social activity during pregnancy and the social capital of the study participants, with different types of questions such as multiple-choice questions, polar questions, and Likert scales. Data analysis was carried out by using Statistical Package for the Social Sciences version 23. Descriptive statistic as frequency, percentage, mean, and standard deviation was used to describe the sample characteristics, and the simple linear regression test was used to assess the relationship between the different variables, with level of significance P≤0.005. Result: This study revealed that only 31.1% of the study participants perceived that they have good general health status. About two thirds (62.8%) of the participants have moderate social capital, more than one ten (11.2٪) have high social capital and more than a quarter (26%) of them have low social capital. All dimensions of social capital except for empowerment and political action had positive significant correlations with the health status of pregnant women with P value ranging from 0.001 to 0.010in all dimensions. In general, the social capital showed high statistically significant association with the health status of the pregnant (P=0.002). Conclusion: Less than one third of the study participants had good perceived health status, and the majority of the study participants have moderate social capital, with only about one ten of them perceived that they have high social capital. Finally, neighborhood residency area, family size, sufficiency of income, past medical and surgical history and parity of the study participants were all significantly impacting the assessed health domains of the pregnant women.Keywords: impact, social capital, health status, pregnant women
Procedia PDF Downloads 6224869 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 64624868 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil
Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira
Abstract:
In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.Keywords: railway transport, energy efficiency, railway technology, fuel consumption
Procedia PDF Downloads 30924867 Identifying Common Sports Injuries in Karate and Presenting a Model for Preventing Identified Injuries (A Case Study of East Azerbaijan, Iranian Karatekas)
Authors: Nadia Zahra Karimi Khiavi, Amir Ghiami Rad
Abstract:
Due to the high likelihood of injuries in karate, karatekas' injuries warrant special treatment. This study explores the prevalence of karate injuries in East Azerbaijan, Iran and provides a model for karatekas to use in the prevention of such injuries. This study employs a descriptive approach. Male and female participants with a brown belt or above in either control or non-control styles in East Azerbaijan province are included in the study's statistical population. A statistical sample size of 100 people was computed using the tools employed (smartpls), and the samples were drawn at random from all clubs in the province with the assistance of the Karate Board in order to give a model for the prevention of karate injuries. Information was gathered by means of a survey that made use of the Standard Questionnaire for Australian Sports Medicine Injury Reports. The information is presented in the form of tables and samples, and descriptive statistics were used to organise and summarise the data. Control and non-control independent t-tests were conducted using SPSS version 20, and structural equation modelling (pls) was utilised for injury prevention modelling at a 0.05 level of significance. The results showed that the most common areas of injury among the control groups were the upper limbs (46.15%), lower limbs (34.61%), trunk (15.38%), and head and neck (3.84%). The most common types of injuries were broken bones (34.61%), sprain or strain (23.13%), bruising and contusions (23.13%), trauma to the face and mouth (11.53%), and damage to the nerves (69.69%). Uncontrolled committees are most likely to sustain injuries to the head and neck (33.33%), trunk (25.92%), upper limbs (22.22%), and lower limbs (18.51%). The most common injuries were to the mouth and face (33.33%), dislocations and fractures (22.22%), aspirin and strain (22.22%), bruises and contusions (18.51%), and nerves (70%), in that order. Among those who practice control kata, injuries to the upper limb account for 45.83%, the lower limb for 41.666%, the trunk for 8.33%, and the head and neck for 4.166%. The most common types of injuries are dislocations and fractures (41.66 per cent), aspirin and strain (29.16 per cent), bruising and bruises (16.66 per cent), and nerves (12.5%). Injuries to the face and mouth were not reported among those practising the control kata. By far, the most common sites of injury for those practising uncontrolled kata were the lower limb (43.74%), upper limb (39.13%), trunk (13.14%), and head and neck (4.34%). The most common types of injuries were dislocations and fractures (34.82%), aspirin and strain (26.08%), bruises and contusions (21.73%), mouth and face (13.14%), and nerves. Teaching the concepts of cooling and warming (0.591) and enhancing the degree of safety in the sports environment (0.413) were shown to play the most essential roles in reducing sports injuries among karate practitioners of controlling and uncontrolled styles, respectively. Use of common sports gear (0.390), Modification of training programme principles (0.341), Formulation of an effective diet plan for athletes (0.284), Evaluation of athletes' physical anatomy, physiology, chemistry, and physics (0.247).Keywords: sports injuries, karate, prevention, cooling and warming
Procedia PDF Downloads 10524866 Evaluation of Nuts as a Source of Selenium in Diet
Authors: Renata Markiewicz-Żukowska, Patryk Nowakowski, Sylwia K. Naliwajko, Jakub M. Bołtryk, Katarzyna Socha, Anna Puścion-Jakubik, Jolanta Soroczyńska, Maria H. Borawska
Abstract:
Selenium (Se) is an essential element for human health. As an integral part of glutathione peroxidase, it has antioxidant, anti-inflammatory and anticancer activities. Unfortunately, Se dietary intake is often insufficient, especially in regions where the soil is low in Se. Therefore, in search for good sources of Se, the content of this element in food products should be monitored. Food product can be considered as a source of Se when its standard portion covers above 15% of recommended daily allowance. In the case of nuts, 42g is recognized as the standard portion. The aim of this study was to determine the Se content in nuts and to answer the question of whether the studied nuts can be considered as a source of Se in the diet. The material for the study consisted of 10 types of nuts (12 samples of each one): almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts. The nuts were mineralized using microwave technique (Berghof, Germany). The content of Se was determined by atomic absorption spectrometry method with electrothermal atomization in a graphite tube with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. Statistical significance was determined at p < 0.05 level. The highest content of Se was found in Brazil nuts (4566.21 ± 3393.9 µg/kg) and the lowest in almonds (36.07 ± 18.8 µg/kg). A standard portion (42g) of almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts covers the recommended daily allowance for Se respectively in: 2, 192, 28, 2, 16, 7, 4, 3, 12, 6%. Brazil nuts, cashews and macadamia nuts can be considered as a good source of Se in diet.Keywords: atomic absorption spectrometry, diet, nuts, selenium
Procedia PDF Downloads 18824865 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 21824864 Predicting Child Attachment Style Based on Positive and Safe Parenting Components and Mediating Maternal Attachment Style in Children With ADHD
Authors: Alireza Monzavi Chaleshtari, Maryam Aliakbari
Abstract:
Objective: The aim of this study was to investigate the prediction of child attachment style based on a positive and safe combination parenting method mediated by maternal attachment styles in children with attention deficit hyperactivity disorder. Method: The design of the present study was descriptive of correlation and structural equations and applied in terms of purpose. The population of this study includes all children with attention deficit hyperactivity disorder living in Chaharmahal and Bakhtiari province and their mothers. The sample size of the above study includes 165children with attention deficit hyperactivity disorder in Chaharmahal and Bakhtiari province with their mothers, who were selected by purposive sampling method based on the inclusion criteria. The obtained data were analyzed in two sections of descriptive and inferential statistics. In the descriptive statistics section, statistical indices of mean, standard deviation, frequency distribution table and graph were used. In the inferential section, according to the nature of the hypotheses and objectives of the research, the data were analyzed using Pearson correlation coefficient tests, Bootstrap test and structural equation model. findings:The results of structural equation modeling showed that the research models fit and showed a positive and safe combination parenting style mediated by the mother attachment style has an indirect effect on the child attachment style. Also, a positive and safe combined parenting style has a direct relationship with child attachment style, and She has a mother attachment style. Conclusion:The results and findings of the present study show that there is a significant relationship between positive and safe combination parenting methods and attachment styles of children with attention deficit hyperactivity disorder with maternal attachment style mediation. Therefore, it can be expected that parents using a positive and safe combination232 parenting method can effectively lead to secure attachment in children with attention deficit hyperactivity disorder.Keywords: child attachment style, positive and safe parenting, maternal attachment style, ADHD
Procedia PDF Downloads 7224863 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 19624862 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 52224861 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33924860 Concept Mapping of Teachers Regarding Conflict Management
Authors: Tahir Mehmood, Mumtaz Akhter
Abstract:
The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.Keywords: conflict management, open and distance learning, teachers, students
Procedia PDF Downloads 41724859 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio
Authors: Fan Ye
Abstract:
Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.Keywords: RWIS, visibility distance, low visibility, adverse weather
Procedia PDF Downloads 25524858 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 56124857 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 3724856 Assessing the Effects of Entrepreneurship Education and Moderating Variables on Venture Creation Intention of Undergraduate Students in Ghana
Authors: Daniel K. Gameti
Abstract:
The paper explored the effects of active and passive entrepreneurship education methods on the venture creation intention of undergraduate students in Ghana. The study also examined the moderating effect of gender and negative personal characteristics (risk tolerance, stress tolerance and fear of failure) on students’ venture creation intention. Deductive approach was used in collecting quantitative data from 555 business students from one public university and one private university through self-administered questionnaires. Descriptive statistic was used to determine the dominant method of entrepreneurship education used in Ghana. Further, structural equation model was used to test four hypotheses. The results of the study show that the dominant method of education used in Ghana was lectures and the least method used was field trip. The study further revealed that passive methods of education are less effective compared to active methods which were statistically significant in venture creation intention among students. There was also statistical difference between male and female students’ venture creation intention but stronger among male students and finally, the only personal characteristics that influence students’ intention was stress tolerance because risk tolerance and fear of failure were statistically insignificant.Keywords: entrepreneurship education, Ghana, moderating variables, venture creation intention, undergraduate students
Procedia PDF Downloads 45824855 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach
Authors: Yasin Kutuk, Bengi Yanik Ilhan
Abstract:
Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.Keywords: wage income, same industry, pseudo panel, panel data econometrics
Procedia PDF Downloads 40124854 Customized Temperature Sensors for Sustainable Home Appliances
Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy
Abstract:
Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency
Procedia PDF Downloads 7524853 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 59124852 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM card, mobile financial services, cryptography, secure data storage
Procedia PDF Downloads 31624851 Hybridization of Mathematical Transforms for Robust Video Watermarking Technique
Authors: Harpal Singh, Sakshi Batra
Abstract:
The widespread and easy accesses to multimedia contents and possibility to make numerous copies without loss of significant fidelity have roused the requirement of digital rights management. Thus this problem can be effectively solved by Digital watermarking technology. This is a concept of embedding some sort of data or special pattern (watermark) in the multimedia content; this information will later prove ownership in case of a dispute, trace the marked document’s dissemination, identify a misappropriating person or simply inform user about the rights-holder. The primary motive of digital watermarking is to embed the data imperceptibly and robustly in the host information. Extensive counts of watermarking techniques have been developed to embed copyright marks or data in digital images, video, audio and other multimedia objects. With the development of digital video-based innovations, copyright dilemma for the multimedia industry increases. Video watermarking had been proposed in recent years to serve the issue of illicit copying and allocation of videos. It is the process of embedding copyright information in video bit streams. Practically video watermarking schemes have to address some serious challenges as compared to image watermarking schemes like real-time requirements in the video broadcasting, large volume of inherently redundant data between frames, the unbalance between the motion and motionless regions etc. and they are particularly vulnerable to attacks, for example, frame swapping, statistical analysis, rotation, noise, median and crop attacks. In this paper, an effective, robust and imperceptible video watermarking algorithm is proposed based on hybridization of powerful mathematical transforms; Fractional Fourier Transform (FrFT), Discrete Wavelet transforms (DWT) and Singular Value Decomposition (SVD) using redundant wavelet. This scheme utilizes various transforms for embedding watermarks on different layers by using Hybrid systems. For this purpose, the video frames are portioned into layers (RGB) and the watermark is being embedded in two forms in the video frames using SVD portioning of the watermark, and DWT sub-band decomposition of host video, to facilitate copyright safeguard as well as reliability. The FrFT orders are used as the encryption key that allows the watermarking method to be more robust against various attacks. The fidelity of the scheme is enhanced by introducing key generation and wavelet based key embedding watermarking scheme. Thus, for watermark embedding and extraction, same key is required. Therefore the key must be shared between the owner and the verifier via some safe network. This paper demonstrates the performance by considering different qualitative metrics namely Peak Signal to Noise ratio, Structure similarity index and correlation values and also apply some attacks to prove the robustness. The Experimental results are presented to demonstrate that the proposed scheme can withstand a variety of video processing attacks as well as imperceptibility.Keywords: discrete wavelet transform, robustness, video watermarking, watermark
Procedia PDF Downloads 22724850 The Effect of Meta-Cognitive Therapy on Meta-Cognitive Defects and Emotional Regulation in Substance Dependence Patients
Authors: Sahra Setorg
Abstract:
The purpose of this study was to determine the effect of meta-cognitive therapy on meta-cognitive defects and emotional regulation in industrial substance dependence patients. This quasi-experimental research was conducted with post-test and two-month follow-up design with control and experimental groups. The statistical population consisted of all industrial Substance dependence patients refer to addictive withdrawal clinics in Esfahan city, in Iran in 2013. 45 patients were selected from three clinics through the convenience sampling method and were randomly divided into two experimental groups (15 crack dependences, 15 amphetamine dependences) and one control group (n=15). The meta-cognitive questionnaire (MCQ) and difficulties in emotional regulation questionnaire (DERS) were used as pre-test measures and the experimental groups (crack and amphetamine) received 8 MC therapy sessions in groups. The data were analyzed via multivariate covariance statistic method by spss-18. The results showed that MCT had a significant effect in improving the meta-cognitive defects in crack and amphetamine dependences. Also, this therapy can increase the emotional regulation in both groups (p<0/05).The effect of this therapy is confirmed in two months followup. According to these findings, met-cognitive is as an interface and important variable in prevention, control, and treatment of the new industrial substance dependences.Keywords: meta-cognitive therapy, meta-cognitive defects, emotional regulation, substance dependence disorder
Procedia PDF Downloads 51824849 Bridging the Gap through New Media Technology Acceptance: Exploring Chinese Family Business Culture
Authors: Farzana Sharmin, Mohammad Tipu Sultan
Abstract:
Emerging new media technology such as social media and social networking sites have changed the family business dynamics in Eastern Asia. The family business trends in China has been developed at an exponential rate towards technology. In the last two decades, many of this family business has succeeded in becoming major players in the Chinese and world economy. But there are a very few availabilities of literature on Chinese context regarding social media acceptance in terms of the family business. Therefore, this study has tried to cover the gap between culture and new media technology to understand the attitude of Chinese young entrepreneurs’ towards the family business. This paper focused on two cultural dimensions (collectivism, long-term orientation), which are adopted from Greet Hofstede’s. Additionally perceived usefulness and ease of use adopted from the Technology Acceptance Model (TAM) to explore the actual behavior of technology acceptance for the family business. A quantitative survey method (n=275) used to collect data Chinese family business owners' in Shanghai. The inferential statistical analysis was applied to extract trait factors, and verification of the model, respectively. The research results found that using social media for family business promotion has highly influenced by cultural values (collectivism and long-term orientation). The theoretical contribution of this research may also assist policymakers and practitioners of other developing countries to advertise and promote the family business through social media.Keywords: China, cultural dimensions, family business, technology acceptance model, TAM
Procedia PDF Downloads 15524848 Application of the EU Commission Waste Management Methodology Level(s) to a Construction and a Demolition in North-West Romania.
Authors: Valean Maria
Abstract:
Construction and demolition waste management is a timely topic, due to the urgency of its transition to sustainability. This sector is responsible for over a third of the waste generated in the E.U., while the legislation requires a proportion of at least 70% preparation for reuse and recycle, excluding backfilling. To this end, the E.U. Commission has provided the Level(s) methodology, allowing for the standardized planning and reporting of waste quantities across all levels of the construction process, from the architecture, to the demolition, from the estimation stage, to the actual measurements at the end of the operations. We applied Level(s) for the first time to the Romanian context, a developing E.U. country in which illegal dumping of contruction waste in nature and landfills, are still common practice. We performed the desk study of the buildings’ documents, followed by field studies of the sites, and finally the insertion and calculation of statistical data of the construction and demolition waste. We learned that Romania is far from the E.U. average in terms of the initial estimations of waste, with some numbers being higher, others lower, and that the price of evacuation to landfills is significantly lower in the developing country, a possible barrier to adopting the new regulations. Finally, we found that concrete is the predominant type waste, in terms of quantity as well as cost of disposal. Further directions of research are provided, such as mapping out all of the alternative facilities in the region and the calculation of the financial costs and of the CO2 footprint, for preparing and delivering waste sustainably, for a more sound and locally adapted model of waste management.Keywords: construction, waste, management, levels, EU
Procedia PDF Downloads 82