Search results for: robust penalized regression
2452 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 2642451 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.Keywords: climate, degradation, HVAC, neighborhood component analysis
Procedia PDF Downloads 4312450 Marketing Mix Factor Affecting Decision Making Behavior in Using Fitness Service
Authors: Siri-Orn Champatong
Abstract:
The objectives of this research were to study the attitude of service marketing mix that affected the decision making behavior to use fitness service in case of the fitness in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 of consumers who have used the service and interested in using the service in the future. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the attitude toward overall marketing mix was at moderate level. For particulars, attitude toward product and service aspects were at good level, however, attitude toward price, place, promotion, people, physical evidence and service quality aspects were at moderate level. The hypothesis testing results showed that attitude toward each aspect affected word of mouth, however, attitude toward product and service, place, promotion, people and physical evidence affected tendency to use fitness service at .05 statistically significant level.Keywords: decision making behavior, fitness, marketing mix, marketing service
Procedia PDF Downloads 3422449 Healthcare Social Entrepreneurship: A Positive Theory Applied to the Case of YOU Foundation in Nepal
Authors: Simone Rondelli, Damiano Rondelli, Bishesh Poudyal, Juan Jose Cabrera-Lazarini
Abstract:
One of the main obstacles for Social Entrepreneurship is to find a business model that is financially sustainable. In other words, the captured value generates enough cash flow to ensure business continuity and reinvestment for growth. Providing Health Services in poor countries for the uninsured population affected by a high-cost chronical disease is not the exception for this challenge. As a prime example, cancer has become a high impact on a global disease not only because of the high morbidity but also of the financial impact on both the patient family and health services in underdeveloped countries. Therefore, it is relevant to find a Social Entrepreneurship Model that provides affordable treatment for this disease while maintaining healthy finances not only for the patient but also for the organization providing the treatment. Using the methodology of Constructive Research, this paper applied a Positive Theory and four business models of Social Entrepreneurship to a case of a Private Foundation model whose mission is to address the challenge previously described. It was found that the Foundation analyzed, in this case, is organized as an Embedded Business Model and complies with the four propositions of the Positive Theory considered. It is recommended for this Private Foundation to explore implementing the Integrated Business Model to ensure more robust sustainability in the long term. It evolves as a scalable model that can attract investors interested in contributing to expanding this initiative globally.Keywords: affordable treatment, global healthcare, social entrepreneurship theory, sustainable business model
Procedia PDF Downloads 1452448 Personality, Coping, Quality of Life, and Distress in Persons with Hearing Loss: A Cross-Sectional Study of Patients Referred to an Audiological Service
Authors: Oyvind Nordvik, Peder O. L. Heggdal, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad
Abstract:
Background: Hearing Loss (HL) is a condition that may affect people in all stages of life, but the prevalence increases with age, mostly because of age-related HL, generally referred to as presbyacusis. As human speech is related to relatively high frequencies, even a limited hearing loss at high frequencies may cause impaired speech intelligibility. Being diagnosed with, treated for and living with a chronic condition such as HL, must for many be a disabling and stressful condition that put ones coping resources to test. Stress is a natural part of life and most people will experience stressful events or periods. Chronic diseases, such as HL, are risk factor for distress in individuals, causing anxiety and lowered mood. How an individual cope with HL may be closely connected to the level of distress he or she is experiencing and to personality, which can be defined as those characteristics of a person that account for consistent patterns of feelings, thinking, and behavior. Thus, as to distress in life, such as illness or disease, available coping strategies may be more important than the challenge itself. The same line of arguments applies to level of experienced health-related quality of life (HRQoL). Aim: The aim of this study was to investigate the relationship between distress, HRQoL, reported hearing loss, personality and coping in patients with HL. Method: 158 adult (aged 18-78 years) patients with HL, referred for hearing aid (HA) fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals were included. First-time users had been pre-examined by an ENT-specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2, and 4 kHz) was determined for each ear. The Eysenck personality inventory, neuroticism and lie scales, the Theoretically Originated Measure of the Cognitive Activation Theory of Stress (TOMCATS) measuring active coping, hopelessness and helplessness, as well as distress (General Health Questionnaire (GHQ) - 12 items) and the EORTC Quality of Life Questionnaire general part were answered. In addition, we used a revised and shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) as a measure of patient-reported hearing loss. Results: Significant correlations were determined between APHAB (weak), HRQoL scores (strong), distress scores (strong) on the one side and personality and choice of coping scores on the other side. As measured by stepwise regression analyses, the distress and HRQoL scores were scored secondary to the obtained personality and coping scores. The APHAB scores were as determined by regression analyses scored secondary to PTA (best ear), level of neuroticism and lie score. Conclusion: We found that reported employed coping style, distress/HRQoL and personality are closely connected to each other in this patient group. Patient-reported HL was associated to hearing level and personality. There is need for further investigations on these questions, and how these associations may influence the clinical context.Keywords: coping, distress, hearing loss, personality
Procedia PDF Downloads 1452447 Cybersecurity Strategies for Protecting Oil and Gas Industrial Control Systems
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry is a critical component of the global economy, relying heavily on industrial control systems (ICS) to manage and monitor operations. However, these systems are increasingly becoming targets for cyber-attacks, posing significant risks to operational continuity, safety, and environmental integrity. This paper explores comprehensive cybersecurity strategies for protecting oil and gas industrial control systems. It delves into the unique vulnerabilities of ICS in this sector, including outdated legacy systems, integration with IT networks, and the increased connectivity brought by the Industrial Internet of Things (IIoT). We propose a multi-layered defense approach that includes the implementation of robust network security protocols, regular system updates and patch management, advanced threat detection and response mechanisms, and stringent access control measures. We illustrate the effectiveness of these strategies in mitigating cyber risks and ensuring the resilient and secure operation of oil and gas industrial control systems. The findings underscore the necessity for a proactive and adaptive cybersecurity framework to safeguard critical infrastructure in the face of evolving cyber threats.Keywords: cybersecurity, industrial control systems, oil and gas, cyber-attacks, network security, IoT, threat detection, system updates, patch management, access control, cybersecurity awareness, critical infrastructure, resilience, cyber threats, legacy systems, IT integration, multi-layered defense, operational continuity, safety, environmental integrity
Procedia PDF Downloads 442446 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 1492445 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency Deciency Syndrome (AIDS)
Authors: Mohd Asrul Affendi Bin Abdullah
Abstract:
Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.Keywords: power sample size, Wald test, standardize rate, ZINBDR
Procedia PDF Downloads 4372444 Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime
Authors: Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta, Ahmed Zeouita
Abstract:
Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration.Keywords: reliability, stochastics, preventive maintenance
Procedia PDF Downloads 152443 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1192442 Education in Personality Development and Grooming for Airline Business Program's Students of International College, Suan Sunandha Rajabhat University
Authors: Taksina Bunbut
Abstract:
Personality and grooming are vital for creating professionalism and safety image for all staffs in the airline industry. Airline Business Program also has an aim to educate students through the subject Personality Development and Grooming in order to elevate the quality of students to meet standard requirements of the airline industry. However, students agree that there are many difficulties that cause unsuccessful learning experience in this subject. The research is to study problems that can afflict students from getting good results in the classroom. Furthermore, exploring possible solutions to overcome challenges are also included in this study. The research sample consists of 140 students who attended the class of Personality Development and Grooming. The employed research instrument is a questionnaire. Statistic for data analysis is t-test and Multiple Regression Analysis. The result found that although students are satisfied with teaching and learning of this subject, they considered that teaching in English and teaching topics in social etiquette in different cultures are difficult for them to understand.Keywords: personality development, grooming, Airline Business Program, soft skill
Procedia PDF Downloads 2382441 Managing and Sustaining Strategic Relationships with Distributors by Electronic Agencies in Jordan
Authors: Abdallah Q. Bataineh
Abstract:
The electronics market in Jordan is facing extraordinary expectations from consumers, whose opinions are progressively more essential and have effective power on the overall marketing strategy preparation and execution by electronics agents. This research aimed to explore the effect of price volatile, follow-up, maintenance and warranty policy on distributor’s retention. Focus group, in-depth interviews, and self-administered questionnaire were held with a total sample of 50 electronics distribution stores who have a direct contact and purchase frequently from electronic agencies. By using descriptive statistics and multiple regression tests, the main findings of this research is that there is an impact of price volatile, follow-up, maintenance and warranty policy on distributor’s retention, and the key predictor variable was price volatile. Thus, the researcher recommended flat rate pricing strategy to ensure that all distributors will sell the product on the same pricing base, regardless of the generated margin by each one of them. Moreover, conclusion and future research were also discussed.Keywords: distributors retention, follow-up, maintenance, price volatile, warranty policy
Procedia PDF Downloads 2372440 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste
Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun
Abstract:
A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model, which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contain 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.Keywords: single cell protein, response surface methodology, yeast, cassava processing waste
Procedia PDF Downloads 4032439 Predictors and Prevention of Sports’ Injuries among Male Professional Footballers in Nigeria
Authors: Timothy A. Oloyede
Abstract:
The study assessed the influence of playing field, climatic conditions, rate of exposure to matches, skill level and competition level on the occurrence and severity of football injuries. The prospective outline of the study was as follows: after a baseline examination and measurements were performed ascertaining possible predictors of injury, all players were followed up weekly for one year to register subsequent injuries and complaints. Four hundred and thirty-five out of 455 subjects completed the weekly follow-ups over one year. Multiple regression analysis was employed to analyse the data collected. Results showed that playing field, climatic conditions, rate of exposure to matches skill level and competition level were predictors of injuries among the professional footballer. Playing on natural grass, acclimatization, reduction of physical overload, among others, were strategies postulated for preventing injuries.Keywords: sports’ injuries, predictors of sports’ injuries, intrinsic risk factors, extrinsic risk factors, injury mechanism, professional footballer
Procedia PDF Downloads 2532438 Chemometric Estimation of Phytochemicals Affecting the Antioxidant Potential of Lettuce
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Aleksandra Tepic-Horecki, Zdravko Sumic
Abstract:
In this paper, the influence of six different phytochemical content (phenols, carotenoids, chlorophyll a, chlorophyll b, chlorophyll a + b and vitamin C) on antioxidant potential of Murai and Levistro lettuce varieties was evaluated. Variable selection was made by generalized pair correlation method (GPCM) as a novel ranking method. This method is used for the discrimination between two variables that almost equal correlate to a dependent variable. Fisher’s conditional exact and McNemar’s test were carried out. Established multiple linear (MLR) models were statistically evaluated. As the best phytochemicals for the antioxidant potential prediction, chlorophyll a, chlorophyll a + b and total carotenoids content stand out. This was confirmed through both GPCM and MLR, predictive ability of obtained MLR can be used for antioxidant potential estimation for similar lettuce samples. This article is based upon work from the project of the Provincial Secretariat for Science and Technological Development of Vojvodina (No. 114-451-347/2015-02).Keywords: antioxidant activity, generalized pair correlation method, lettuce, regression analysis
Procedia PDF Downloads 3882437 Secure and Privacy-Enhanced Blockchain-Based Authentication System for University User Management
Authors: Ali El Ksimi
Abstract:
In today's digital academic environment, secure authentication methods are essential for managing sensitive user data, including that of students and faculty. The rise in cyber threats and data breaches has exposed the vulnerabilities of traditional authentication systems used in universities. Passwords, often the first line of defense, are particularly susceptible to hacking, phishing, and brute-force attacks. While multi-factor authentication (MFA) provides an additional layer of security, it can still be compromised and often adds complexity and inconvenience for users. As universities seek more robust security measures, blockchain technology emerges as a promising solution. Renowned for its decentralization, immutability, and transparency, blockchain has the potential to transform how user management is conducted in academic institutions. In this article, we explore a system that leverages blockchain technology specifically for managing user accounts within a university setting. The system enables the secure creation and management of accounts for different roles, such as administrators, teachers, and students. Each user is authenticated through a decentralized application (DApp) that ensures their data is securely stored and managed on the blockchain. By eliminating single points of failure and utilizing cryptographic techniques, the system enhances the security and integrity of user management processes. We will delve into the technical architecture, security benefits, and implementation considerations of this approach. By integrating blockchain into user management, we aim to address the limitations of traditional systems and pave the way for the future of digital security in education.Keywords: blockchain, university, authentication, decentralization, cybersecurity, user management, privacy
Procedia PDF Downloads 252436 Board Characteristics, Audit Committee Characteristics, and the Level of Bahraini Corporate Compliance with Mandatory IFRS Disclosure Requirements
Authors: Omar Juhmani
Abstract:
This paper examines the relation between internal corporate governance and the level of corporate compliance with mandatory IFRS disclosure requirements. The internal corporate governance is measured by board and audit committee characteristics. Using data from Bahrain Stock Exchange, the results show that board independence is positively and significantly associated with level of compliance with IFRS disclosure requirements. This suggests that internal corporate governance mechanisms are effective in the financial reporting practices by increasing the level of compliance with IFRS disclosures. Also, the results of the regression analyses indicate that two of the control variables; company size and audit firm size are significantly positively associated with the level of corporate compliance with mandatory IFRS disclosure requirements in Bahrain.Keywords: Bahrain, board and audit committee characteristics, compliance, disclosure, IFRS
Procedia PDF Downloads 4212435 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine
Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels
Abstract:
This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.Keywords: AFPM, CFD, magnet parameters, stator heat transfer
Procedia PDF Downloads 2502434 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-Industrial Sector
Authors: Rym Ghariani, Younes Boujelbene
Abstract:
This study aimed to examine the impact of digitalization and supply chain integration on the financial performance of companies in the agro-industrial sector in Tunisia, highlighting the growing importance of digital technologies in modern economies. The results were analyzed using a questionnaire and using principal component analysis, as well as linear regression modeling with SPSS26. The results demonstrate that the digitalization and integration of the supply chain have a significant impact on the financial results of Tunisian agro-industrial companies. In theory, this study provides a better understanding of the effects of digital advancements and supply chain strategies on financial results in this specific area. This study, therefore, studies the relationship between these variables and financial efficiency, highlighting the significant impacts of these technological and strategic elements on the financial results of agro-industrial companies in Tunisia.Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector
Procedia PDF Downloads 452433 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 1012432 Wealth-Based Inequalities in Child Health: A Micro-Level Analysis of Maharashtra State in India
Abstract:
The study examines the degree and magnitude of wealth-based inequalities in child health and its determinants in India. Despite making strides in economic growth, India has failed to secure a better nutritional status for all the children. The country currently faces the double burden of malnutrition as well as the problems of overweight and obesity. Child malnutrition, obesity, unsafe water, sanitation among others are identified as the risk factors for Non-Communicable Diseases (NCDs). Eliminating malnutrition in all its forms will catalyse improved health and economic outcomes. The assessment of the distributive dimension of child health across various segments of the population is essential for effective policy intervention. The study utilises the fourth round of District Level Health Survey for 2012-13 to analyse the inequalities among children in the age group 0-14 years in Maharashtra, a state in the western region of India with a population of 11.24 crores which constitutes 9.3 percent of the total population of India. The study considers the extent of health inequality by state, districts, sector, age-groups, and gender. The z-scores of four child health outcome variables are computed to assess the nutritional status of pre-school and school children using WHO reference. The descriptive statistics, concentration curves, concentration indices, correlation matrix, logistic regression have been used to analyse the data. The results indicate that magnitude of inequality is higher in Maharashtra and child health inequalities manifest primarily among the weaker sections of society. The concentration curves show that there exists a pro-poor inequality in child malnutrition measured by stunting, wasting, underweight, anaemia and a pro-rich overweight inequality. The inequalities in anaemia are observably lower due to the widespread prevalence. Rural areas exhibit a higher incidence of malnutrition, but greater inequality is observed in the urban areas. Overall, the wealth-based inequalities do not vary significantly between age groups. It appears that there is no gender discrimination at the state level. Further, rural-urban differentials in gender show that boys from the rural area and girls living in the urban region experience higher disparities in health. The relative distribution of undernutrition across districts in Maharashtra reveals that malnutrition is rampant and considerable heterogeneity also exists. A negative correlation is established between malnutrition prevalence and human development indicators. The findings of logistic regression analysis reveal that lower economic status of the household is associated with a higher probability of being malnourished. The study recognises household wealth, education of the parent, child gender, and household size as factors significantly related to malnutrition. The results suggest that among the supply-side variables, child-oriented government programmes might be beneficial in tackling nutrition deficit. In order to bridge the health inequality gap, the government needs to target the schemes better and should expand the coverage of services.Keywords: child health, inequality, malnutrition, obesity
Procedia PDF Downloads 1462431 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1312430 Q-Map: Clinical Concept Mining from Clinical Documents
Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala
Abstract:
Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.Keywords: information retrieval, unified medical language system, syntax based analysis, natural language processing, medical informatics
Procedia PDF Downloads 1332429 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 1382428 Mathematical Modelling for Diesel Consumption of Articulated Vehicle Used in Oyo State, Nigeria
Authors: Ganiyu Samson Okunlola, Ladanu Abiodun Ajala, Olaide Oluwaseun Adegbayo
Abstract:
Since the usefulness of articulated vehicles is becoming more apparent and the diesel consumption of these vehicles constitutes a major portion of operating costs, development of mathematical model for their diesel consumption is of a great importance. Therefore, the present work developed a quantitative relationship between diesel consumption and vehicle age, annual use and cost of maintenance of the different makes of articulated vehicles. The vehicles selected for the study were FIAT 682 T3, IVECO 19036 and M.A.N. Diesel 19.240. The operating parameters for 90 vehicles of different age groups were recorded. Multiple regression models for diesel consumption of articulated vehicles of different makes were developed. From the analysis of results, it can be concluded that as the age of the vehicles increases, the diesel consumption increases. Also, as the diesel consumption increases, the cost of maintenance increases and there is a subsequent decrease in annual use. Moreover, FIAT 682 T3 and IVECO 19036 should be replaced at 7 years of age while M.A.N diesel should be replaced at 8 years of age. These are the ages where the diesel consumption becomes abnormal and uneconomical and they are points of optimal overhaul.Keywords: vehicle, overhaul, age, uneconomical, diesel, consumption
Procedia PDF Downloads 2512427 Estimation of Global and Diffuse Solar Radiation Studies of Islamabad, Capital City of Pakistan
Authors: M. Akhlaque Ahmed, Maliha Afshan, Adeel Tahir
Abstract:
Global and diffuse solar radiation studies have been carried out for the Capital city of Pakistan, Islamabad ( latitude 330 43’N and Longitude 370 71’E) to assess the solar potential of the area. The global and diffuse solar radiation were carried out using sunshine hour data for the above-mentioned area. Monthly total solar radiation is calculated through regression constants a and b through declination angle of the sun and sunshine hours and KT that is cloudiness index are used to calculate the diffuse solar radiation. Result obtained shows variation in the direct and diffuse component of solar radiation in summer and winter months for Islamabad. Diffuse solar radiation was found maximum in July, i.e., 32% whereas direct or beam radiation was found to be high in April to June, i.e., 73%. During July, August, and December, the sky was found cloudy. From the result, it appears that with the exception of monsoon month July and August the solar energy can be utilized very efficiently throughout the year in Islamabad.Keywords: global radiation, Islamabad, diffuse radiation, sky condition, sunshine hour
Procedia PDF Downloads 1682426 Towards an African Model: A Survey of Social Enterprises in South Africa
Authors: Kerryn Krige, Kerrin Myers
Abstract:
Social entrepreneurship offers the opportunity to simultaneously address both social and economic inequality in South Africa. Its appeal across racial groups, its attractiveness to young people, its applicability in rural and peri-urban markets, and its acceleration in middle income, large-business economies suits the South African context. However, the potential to deliver much-needed developmental benefits has not been realised because the social entrepreneurship debate lacks evidence as to who social entrepreneurs are, their goals and operations and the socio-economic results they achieve. As a result, policy development has been stunted, and legislative barriers and red tape remain. Social entrepreneurs are isolated from the mainstream economy, and struggle to access funding because of limitations in legislative and organisational structures. The objective of the study is to strengthen the ecosystem for social entrepreneurship in South Africa by producing robust, policy-rich information from and about social enterprises currently in operation across the country. The study employs a quantitative survey methodology, using online and telephonic data collection methods. A purposive sample of 1000 social enterprises was included in the first large-scale study of social entrepreneurship in South Africa. The results offer deep insight into the characteristics of social enterprises; the activities they undertake and the markets they serve; their modes of operation and funding sources as well as key challenges and support systems. The results contribute towards developing a model of social enterprise in the African context.Keywords: social enterprise, key characteristics, challenges and enablers, towards an African model
Procedia PDF Downloads 3072425 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Authors: Tshaudi Motsima
Abstract:
Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).Keywords: class attendance, examination performance, final outcome, logistic regression
Procedia PDF Downloads 1342424 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 1122423 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 42