Search results for: artificial cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5752

Search results for: artificial cell

3592 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 116
3591 Antiangiogenic and Pro-Apoptotic Properties of Shemamruthaa: An Herbal Preparation in Experimental Mammary Carcinoma-Bearing Rats and Breast Cancer Cell Line In vitro

Authors: Nandhakumar Elumalai, Purushothaman Ayyakannu, Sachidanandam T. Panchanatham

Abstract:

Background: Understanding the basic mechanisms and factors underlying the tumor growth and invasion has gained attention in recent times. The processes of angiogenesis and apoptosis are known to play a vital role in various stages of cancer. The vascular endothelial growth factor (VEGF) is well established as one of the key regulators of tumor angiogenesis while MMPs are known for their exclusive ability to degrade ECM. Objective: The present study was designed to evaluate the pro apoptotic and anti angiogenic activity of the herbal formulation Shemamruthaa. The anticancer activity of Shemamruthaa was tested in breast cancer cell line (MCF-7). Results of MTT, trypan blue and flow cytometric analysis of apoptotis suggested that Shemamruthaa can induce cytotoxicity in cancer cells, in a concentration- and time dependent manner and induce apoptosis. With these results, we further evaluated the antiangiogenic and pro-apoptotic activities of Shemamruthaa in DMBA induced mammary carcinoma in Sprague Dawley rats. Flavono tumour was induced in 8-week-old Sprague-Dawley rats by gastric intubation of 25 mg DMBA in 1ml olive oil. After 90 days of induction period, the rats were orally administered with Shemamruthaa (400 mg/kg body wt) for 45 days. Treatment with the drug SM significantly modulated the expression of p53, MMP-2, MMP-3, MMP-9 and VEGF by means of its anti angiogenic and protease inhibiting activity. Conclusion: Based on these results, it might be concluded that the formulation, Shemamruthaa, constituted of dried flowers of Hibiscus rosa-sinensis, fruits of Emblica officinalis, and honey has been found to exhibit pronounced antiproliferative and apoptotic effects. This enhanced anticancer effect of Shemamruthaa might be attributed to the synergistic action of polyphenols such as flavonoids, tannins, alkaloids, glycosides, saponins, steroids, terpenoids, vitamin C, niacin, pyrogallol, hydroxymethylfurfural, trilinolein, and other compounds present in the formulation. Collectively, these results demonstrate that Shemamruthaa holds potential to be developed as a potent chemotherapeutic agent against mammary carcinoma.

Keywords: Shemamruthaa, flavonoids, MCF-7 cell line, mammary cancer

Procedia PDF Downloads 252
3590 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 107
3589 Leaf Epidermal Micromorphology as Identification Features in Accessions of Sesamum indicum L. Collected from Northern Nigeria

Authors: S. D. Abdul, F. B. J. Sawa, D. Z. Andrawus, G. Dan'ilu

Abstract:

Fresh leaves of twelve accessions of S. indicum were studied to examine their stomatal features, trichomes, epidermal cell shapes and anticlinal cell-wall patterns which may be used for the delimitation of the varieties. The twelve accessions of S. indicum studied have amphistomatic leaves, i.e. having stomata on both surfaces. Four types of stomatal complex types were observed namely, diacytic, anisocytic, tetracytic and anomocytic. Anisocytic type was the most common occurring on both surfaces of all the varieties and occurred 100% in varieties lale-duk, ex-sudan and ex-gombe 6. One-way ANOVA revealed that there was no significant difference between the stomatal densities of ex-gombe 6, ex-sudan, adawa-wula, adawa-ting, ex-gombe 4 and ex-gombe 2 . Accession adawa-ting (improved) has the smallest stomatal size (26.39µm) with highest stomatal density (79.08mm2) while variety adawa-wula possessed the largest stomatal size (74.31µm) with lowest stomatal density (29.60mm2), the exception was found in variety adawa-ting whose stomatal size is larger (64.03µm) but with higher stomatal density (71.54mm2). Wavy, curve or undulate anticlinal wall patterns with irregular and or isodiametric epidermal cell shapes were observed. These accessions were found to exhibit high degree of heterogeneity in their trichome features. Ten types of trichomes were observed: unicellular, glandular peltate, capitate glandular, long unbranched uniseriate, short unbranched uniseriate, scale, multicellular, multiseriate capitate glandular, branched uniseriate and stallate trichomes. The most frequent trichome type is short-unbranched uniseriate, followed by long-unbranched uniseriate (72.73% and 72.5%) respectively. The least frequent was multiseriate capitate glandular (11.5%). The high variation in trichome types and density coupled with the stomatal complex types suggest that these varieties of S. indicum probably have the capacity to conserve water. Furthermore, the leaf micromorphological features varied from one accession to another, hence, are found to be good diagnostic and additional tool in identification as well as nomenclature of the accessions of S. indicum.

Keywords: Sesamum indicum, stomata, trichomes, epidermal cells, taxonomy

Procedia PDF Downloads 278
3588 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues

Authors: Barna Arnold Keserű

Abstract:

In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.

Keywords: artificial intelligence, intellectual property, liability, robotics

Procedia PDF Downloads 207
3587 Awareness among Medical Students and Faculty about Integration of Artifical Intelligence Literacy in Medical Curriculum

Authors: Fatima Faraz

Abstract:

BACKGROUND: While Artificial intelligence (AI) provides new opportunities across a wide variety of industries, healthcare is no exception. AI can lead to advancements in how the healthcare system functions and improves the quality of patient care. Developing countries like Pakistan are lagging in the implementation of AI-based solutions in healthcare. This demands increased knowledge and AI literacy among health care professionals. OBJECTIVES: To assess the level of awareness among medical students and faculty about AI in preparation for teaching AI basics and data science applications in clinical practice in an integrated medical curriculum. METHODS: An online 15-question semi-structured questionnaire, previously tested and validated, was delivered among participants through convenience sampling. The questionnaire composed of 3 parts: participant’s background knowledge, AI awareness, and attitudes toward AI applications in medicine. RESULTS: A total of 182 students and 39 faculty members from Rawalpindi Medical University, Pakistan, participated in the study. Only 26% of students and 46.2% of faculty members responded that they were aware of AI topics in clinical medicine. The major source of AI knowledge was social media (35.7%) for students and professional talks and colleagues (43.6%) for faculty members. 23.5% of participants answered that they personally had a basic understanding of AI. Students and faculty (60.1%) were interested in AI in patient care and teaching domain. These findings parallel similar published AI survey results. CONCLUSION: This survey concludes interest among students and faculty in AI developments and technology applications in healthcare. Further studies are required in order to correctly fit AI in the integrated modular curriculum of medical education.

Keywords: medical education, data science, artificial intelligence, curriculum

Procedia PDF Downloads 104
3586 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 472
3585 The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape

Authors: Emanuela Chiarella, Annamaria Aloisio, Nisticò Clelia, Maria Mesuraca

Abstract:

ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene.

Keywords: AML, human zinc finger protein 521 (hZNF521), mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9), cord blood-derived hematopoietic stem cells (CB-CD34+)

Procedia PDF Downloads 112
3584 The Structural Alteration of DNA Native Structure of Staphylococcus aureus Bacteria by Designed Quinoxaline Small Molecules Result in Their Antibacterial Properties

Authors: Jeet Chakraborty, Sanjay Dutta

Abstract:

Antibiotic resistance by bacteria has proved to be a severe threat to mankind in recent times, and this fortifies an urgency to design and develop potent antibacterial small molecules/compounds with nonconventional mechanisms than the conventional ones. DNA carries the genetic signature of any organism, and bacteria maintain their genomic DNA inside the cell in a well-regulated compact form with the help of various nucleoid associated proteins like HU, HNS, etc. These proteins control various fundamental processes like gene expression, replication, etc., inside the cell. Alteration of the native DNA structure of bacteria can lead to severe consequences in cellular processes inside the bacterial cell that ultimately result in the death of the organism. The change in the global DNA structure by small molecules initiates a plethora of cellular responses that have not been very well investigated. Echinomycin and Triostin-A are biologically active Quinoxaline small molecules that typically consist of a quinoxaline chromophore attached with an octadepsipeptide ring. They bind to double-stranded DNA in a sequence-specific way and have high activity against a wide variety of bacteria, mainly against Gram-positive ones. To date, few synthetic quinoxaline scaffolds were synthesized, displaying antibacterial potential against a broad scale of pathogenic bacteria. QNOs (Quinoxaline N-oxides) are known to target DNA and instigate reactive oxygen species (ROS) production in bacteria, thereby exhibiting antibacterial properties. The divergent role of Quinoxaline small molecules in medicinal research qualifies them for the evaluation of their antimicrobial properties as a potential candidate. The previous study from our lab has given new insights on a 6-nitroquinoxaline derivative 1d as an intercalator of DNA, which induces conformational changes in DNA upon binding.7 The binding event observed was dependent on the presence of a crucial benzyl substituent on the quinoxaline moiety. This was associated with a large induced CD (ICD) appearing in a sigmoidal pattern upon the interaction of 1d with dsDNA. The induction of DNA superstructures by 1d at high Drug:DNA ratios was observed that ultimately led to DNA condensation. Eviction of invitro-assembled nucleosome upon treatment with a high dose of 1d was also observed. In this work, monoquinoxaline derivatives of 1d were synthesized by various modifications of the 1d scaffold. The set of synthesized 6-nitroquinoxaline derivatives along with 1d were all subjected to antibacterial evaluation across five different bacteria species. Among the compound set, 3a displayed potent antibacterial activity against Staphylococcus aureus bacteria. 3a was further subjected to various biophysical studies to check whether the DNA structural alteration potential was still intact. The biological response of S. aureus cells upon treatment with 3a was studied using various cell biology processes, which led to the conclusion that 3d can initiate DNA damage in the S. aureus cells. Finally, the potential of 3a in disrupting preformed S.aureus and S.epidermidis biofilms was also studied.

Keywords: DNA structural change, antibacterial, intercalator, DNA superstructures, biofilms

Procedia PDF Downloads 171
3583 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications

Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique

Abstract:

Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.

Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis

Procedia PDF Downloads 134
3582 Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy

Authors: Malgorzata J. Rybak-Smith, Benedicte Thiebaut, Simon Johnson, Peter Bishop, Helen E. Townley

Abstract:

Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy.

Keywords: cancer, gadolinium, ROS, titania nanoparticles, X-ray

Procedia PDF Downloads 432
3581 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis

Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic

Abstract:

3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.

Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering

Procedia PDF Downloads 248
3580 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 139
3579 Collision Tumor of Plasmacytoma with Hematological and Non-Hematological Malignancies

Authors: Arati Inamdar, Siddharth Bhattacharyya, Kester Haye

Abstract:

Collision tumors are rare entities characterized by neoplasms of two different cell populations with distinct separating boundaries. Such tumors could be benign, malignant, or a combination of both. The exact mechanism of origin for collision tumors is predicted to be tumor heterogeneity or concurrent occurrence of neoplasm in the same organ. We present two cases of plasmacytoma presenting as a collision tumor, one with a tumor of hematological origin and another with a non-hematological origin, namely Chronic Lymphocytic Leukemia and Adenocarcinoma of the colon, respectively. The immunohistochemical stains and flowcytometry analysis performed on the specimens aided incorrect diagnosis. Interestingly, neoplastic cells of plasmacytoma in the first case demonstrated strong cytokeratin along with weak Epithelial Specific Antigen/ Epithelial cell adhesion molecule Monoclonal Antibody (MOC31) positivity, indicating that the tumor may influence the microenvironment of the tumor in the vicinity. Furthermore, the next-generation sequencing studies performed on the specimen with plasmacytoma and chronic lymphocytic lymphoma demonstrated BReast CAncer gene (BRCA2) and Tumor Necrosis Factor Alpha Induced Protein 3 (TNFAIP3) as a disease associated variants suggestive of risk for multiple tumors including collision tumors. Our reports highlight the unique collision tumors involving plasmacytoma, which have never been reported previously, as well as provide necessary insights about the underline genetic aberrations and tumor heterogeneity through sequencing studies and allow clonality assessment for subsequent tumors.

Keywords: BRCA2, collision tumor, chronic lymphocytic leukemia, plasmacytoma

Procedia PDF Downloads 193
3578 Ethical Artificial Intelligence: An Exploratory Study of Guidelines

Authors: Ahmad Haidar

Abstract:

The rapid adoption of Artificial Intelligence (AI) technology holds unforeseen risks like privacy violation, unemployment, and algorithmic bias, triggering research institutions, governments, and companies to develop principles of AI ethics. The extensive and diverse literature on AI lacks an analysis of the evolution of principles developed in recent years. There are two fundamental purposes of this paper. The first is to provide insights into how the principles of AI ethics have been changed recently, including concepts like risk management and public participation. In doing so, a NOISE (Needs, Opportunities, Improvements, Strengths, & Exceptions) analysis will be presented. Second, offering a framework for building Ethical AI linked to sustainability. This research adopts an explorative approach, more specifically, an inductive approach to address the theoretical gap. Consequently, this paper tracks the different efforts to have “trustworthy AI” and “ethical AI,” concluding a list of 12 documents released from 2017 to 2022. The analysis of this list unifies the different approaches toward trustworthy AI in two steps. First, splitting the principles into two categories, technical and net benefit, and second, testing the frequency of each principle, providing the different technical principles that may be useful for stakeholders considering the lifecycle of AI, or what is known as sustainable AI. Sustainable AI is the third wave of AI ethics and a movement to drive change throughout the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, implementation, and governance) in the direction of greater ecological integrity and social fairness. In this vein, results suggest transparency, privacy, fairness, safety, autonomy, and accountability as recommended technical principles to include in the lifecycle of AI. Another contribution is to capture the different basis that aid the process of AI for sustainability (e.g., towards sustainable development goals). The results indicate data governance, do no harm, human well-being, and risk management as crucial AI for sustainability principles. This study’s last contribution clarifies how the principles evolved. To illustrate, in 2018, the Montreal declaration mentioned eight principles well-being, autonomy, privacy, solidarity, democratic participation, equity, and diversity. In 2021, notions emerged from the European Commission proposal, including public trust, public participation, scientific integrity, risk assessment, flexibility, benefit and cost, and interagency coordination. The study design will strengthen the validity of previous studies. Yet, we advance knowledge in trustworthy AI by considering recent documents, linking principles with sustainable AI and AI for sustainability, and shedding light on the evolution of guidelines over time.

Keywords: artificial intelligence, AI for sustainability, declarations, framework, regulations, risks, sustainable AI

Procedia PDF Downloads 96
3577 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 93
3576 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 102
3575 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 147
3574 Optimal Uses of Rainwater to Maintain Water Level in Gomti Nagar, Uttar Pradesh, India

Authors: Alok Saini, Rajkumar Ghosh

Abstract:

Water is nature's important resource for survival of all living things, but freshwater scarcity exists in some parts of world. This study has predicted that Gomti Nagar area (49.2 sq. km.) will harvest about 91110 ML of rainwater till 2051 (assuming constant and present annual rainfall). But 17.71 ML of rainwater was harvested from only 53 buildings in Gomti Nagar area in the year 2021. Water level will be increased (rise) by 13 cm in Gomti Nagar from such groundwater recharge. The total annual groundwater abstraction from Gomti Nagar area was 35332 ML (in 2021). Due to hydrogeological constraints and lower annual rainfall, groundwater recharge is less than groundwater abstraction. The recent scenario is only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. Gomti Nagar is situated in 'Zone–A' (water distribution area) and groundwater is the primary source of freshwater supply. Current scenario indicates only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. In Gomti Nagar, the difference between groundwater abstraction and recharge will be 735570 ML in 30 yrs. Statistically, all buildings at Gomti Nagar (new and renovated) could harvest 3037 ML of rainwater through RTRWHs annually. The most recent monsoonal recharge in Gomti Nagar was 10813 ML/yr. Harvested rainwater collected from RTRWHs can be used for rooftop irrigation, and residential kitchen and gardens (home grown fruit and vegetables). According to bylaws, RTRWH installations are required in both newly constructed and existing buildings plot areas of 300 sq. m or above. Harvested rainwater is of higher quality than contaminated groundwater. Harvested rainwater from RTRWHs can be considered water self-sufficient. Rooftop Rainwater Harvesting Systems (RTRWHs) are least expensive, eco-friendly, most sustainable, and alternative water resource for artificial recharge. This study also predicts about 3.9 m of water level rise in Gomti Nagar area till 2051, only when all buildings will install RTRWHs and harvest for groundwater recharging. As a result, this current study responds to an impact assessment study of RTRWHs implementation for the water scarcity problem in the Gomti Nagar area (1.36 sq.km.). This study suggests that common storage tanks (recharge wells) should be built for a group of at least ten (10) households and optimal amount of harvested rainwater will be stored annually. Artificial recharge from alternative water sources will be required to improve the declining water level trend and balance the groundwater table in this area. This over-exploitation of groundwater may lead to land subsidence, and development of vertical cracks.

Keywords: aquifer, aquitard, artificial recharge, bylaws, groundwater, monsoon, rainfall, rooftop rainwater harvesting system, RTRWHs water table, water level

Procedia PDF Downloads 102
3573 Targetting T6SS of Klebsiella pneumoniae for Assessment of Immune Response in Mice for Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae bacteria is a global threat to human health due to an increase in multi-drug resistance among strains. The hypervirulent strains of Klebsiella pneumoniae is a major trouble due to their association with life-threatening infections in a healthy population. One of the major virulence factors of hyper virulent strains of Klebsiella pneumoniae is the T6SS (Type six secretary system) which is majorly involved in microbial antagonism and causes interaction with the host eukaryotic cells during infections. T6SS mediates some of the crucial factors for establishing infection by the bacteria, such as cell adherence, invasion, and subsequent in vivo colonisation. The antibacterial activity and the cell invasion property of the T6SS system is a major requirement for the establishment of K. pneumoniae infections within the gut. The T6SS can be an appropriate target for developing therapeutics. The T6SS consists of an inner tube comprising hexamers of Hcp (Haemolysin -regulated protein) protein, and at the top of this tube sits VgrG (Valine glycine repeat protein G); the tip of the machinery consists of PAAR domain containing proteins which act as a delivery system for bacterial effectors. For this study, immune response to recombinant VgrG protein was generated to establish this protein as a potential immunogen for the development of therapeutic leads. The immunogenicity of the selected protein was determined by predicting the B cell epitopes by the BCEP analysis tool. The gene sequence for multiple domains of VgrG protein (phage_base_V, T6SS_Vgr, DUF2345) was selected and cloned in pMAL vector in E. coli. The construct was subcloned and expressed as a fusion protein of 203 residue protein with mannose binding protein tag (MBP) to enhance solubility and purification of this protein. The purified recombinant VgrG fusion protein was used for mice immunisation. The antiserum showed reactivity with the recombinant VgrG in ELISA and western blot. The immunised mice were challenged with K. pneumoniae bacteria and showed bacterial clearance in immunised mice. The recombinant VgrG protein can further be used for studying downstream signalling of VgrG protein in mice during infection and for therapeutic MAb development to eradicate K. pneumoniae infections.

Keywords: immune response, Klebsiella pneumoniae, multi-drug resistance, recombinant protein expression, T6SS, VgrG

Procedia PDF Downloads 105
3572 Fucoidan: A Potent Seaweed-Derived Polysaccharide with Immunomodulatory and Anti-inflammatory Properties

Authors: Tauseef Ahmad, Muhammad Ishaq, Mathew Eapen, Ahyoung Park, Sam Karpiniec, Vanni Caruso, Rajaraman Eri

Abstract:

Fucoidans are complex, fucose-rich sulfated polymers discovered in brown seaweeds. Fucoidans are popular around the world, particularly in the nutraceutical and pharmaceutical industries, due to their promising medicinal properties. Fucoidans have been shown to have a variety of biological activities, including anti-inflammatory effects. They are known to inhibit inflammatory processes through a variety of mechanisms, including enzyme inhibition and selectin blockade. Inflammation is a part of the complicated biological response of living systems to damaging stimuli, and it plays a role in the pathogenesis of a variety of disorders, including arthritis, inflammatory bowel disease, cancer, and allergies. In the current investigation, various fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for inhibition of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) in LPS induced human macrophage cell line (THP-1) and human peripheral blood mononuclear cells (PBMCs). Furthermore, we also sought to catalogue these extracts based on their anti-inflammatory effects in the current in-vitro cell model. Materials and Methods: To assess the cytotoxicity of fucoidan extracts, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5, -diphenyltetrazolium bromide) cell viability assay was performed. Furthermore, a dose-response for fucoidan extracts was performed in LPS induced THP-1 cells and PBMCs after pre-treatment for 24 hours, and levels of TNF-α, IL-1β, and IL-6 cytokines were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Results: The MTT cell viability assay demonstrated that fucoidan extracts exhibited no evidence of cytotoxicity in THP-1 cells or PBMCs after 48 hours of incubation. The results of the sandwich ELISA revealed that all fucoidan extracts suppressed cytokine production in LPS-stimulated PBMCs and human THP-1 cells in a dose-dependent manner. Notably, at lower concentrations, the lower molecular fucoidan (5-30 kDa) extract from Macrocystis pyrifera was a highly efficient inhibitor of pro-inflammatory cytokines. Fucoidan extracts from all species including Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica exhibited significant anti-inflammatory effects. These findings on several fucoidan extracts provide insight into strategies for improving their efficacy against inflammation-related diseases. Conclusion: In the current research, we have successfully catalogued several fucoidan extracts based on their efficiency in LPS-induced macrophages and PBMCs in downregulating the key pro-inflammatory cytokines (TNF-, IL-1 and IL-6), which are prospective targets in human inflammatory illnesses. Further research would provide more information on the mechanism of action, allowing it to be tested for therapeutic purposes as an anti-inflammatory medication.

Keywords: fucoidan, PBMCs, THP-1, TNF-α, IL-1β, IL-6, inflammation

Procedia PDF Downloads 61
3571 Exploring the Impact of ChatGPT on the English Writing Skills of a Group of International EFL Uzbek Students: A Qualitative Case Study Conducted at a Private University College in Malaysia

Authors: Uranus Saadat

Abstract:

ChatGPT, as one of the well-known artificial intelligence (AI) tools, has recently been integrated into English language education and has had several impacts on learners. Accordingly, concerns regarding the overuse of this tool among EFL/ESL learners are rising, which could lead to several disadvantages in their writing skills development. The use of ChatGPT in facilitating writing skills is a novel concept that demands further studies in different contexts and learners. In this study, a qualitative case study is applied to investigate the impact of ChatGPT on the writing skills of a group of EFL bachelor’s students from Uzbekistan studying Teaching English as the Second Language (TESL) at a private university in Malaysia. The data was collected through the triangulation of document analysis, semi-structured interviews, classroom observations, and focus group discussions. Subsequently, the data was analyzed by using thematic analysis. Some of the emerging themes indicated that ChatGPT is helpful in engaging students by reducing their anxiety in class and providing them with constructive feedback and support. Conversely, certain emerging themes revealed excessive reliance on ChatGPT, resulting in a decrease in students’ creativity and critical thinking skills, memory span, and tolerance for ambiguity. The study suggests a number of strategies to alleviate its negative impacts, such as peer review activities, workshops for familiarizing students with AI, and gradual withdrawal of AI support activities. This study emphasizes the need for cautious AI integration into English language education to cultivate independent learners with higher-order thinking skills.

Keywords: ChatGPT, EFL/ESL learners, English writing skills, artificial intelligence tools, critical thinking skills

Procedia PDF Downloads 31
3570 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 359
3569 Antimicrobial Efficacy of Some Antibiotics Combinations Tested against Some Molecular Characterized Multiresistant Staphylococcus Clinical Isolates, in Egypt

Authors: Nourhan Hussein Fanaki, Hoda Mohamed Gamal El-Din Omar, Nihal Kadry Moussa, Eva Adel Edward Farid

Abstract:

The resistance of staphylococci to various antibiotics has become a major concern for health care professionals. The efficacy of the combinations of selected glycopeptides (vancomycin and teicoplanin) with gentamicin or rifampicin, as well as that of gentamicin/rifampicin combination, was studied against selected pathogenic staphylococcus isolated from Egypt. The molecular distribution of genes conferring resistance to these four antibiotics was detected among tested clinical isolates. Antibiotic combinations were studied using the checkerboard technique and the time-kill assay (in both the stationary and log phases). Induction of resistance to glycopeptides in staphylococci was tried in the absence and presence of diclofenac sodium as inducer. Transmission electron microscopy was used to study the effect of glycopeptides on the ultrastructure of the cell wall of staphylococci. Attempts were made to cure gentamicin resistance plasmids and to study the transfer of these plasmids by conjugation. Trials for the transformation of the successfully isolated gentamicin resistance plasmid to competent cells were carried out. The detection of genes conferring resistance to the tested antibiotics was performed using the polymerase chain reaction. The studied antibiotic combinations proved their efficacy, especially when tested during the log phase. Induction of resistance to glycopeptides in staphylococci was more promising in presence of diclofenac sodium, compared to its absence. Transmission electron microscopy revealed the thickening of bacterial cell wall in staphylococcus clinical isolates due to the presence of tested glycopeptides. Curing of gentamicin resistance plasmids was only successful in 2 out of 9 tested isolates, with a curing rate of 1 percent for each. Both isolates, when used as donors in conjugation experiments, yielded promising conjugation frequencies ranging between 5.4 X 10-2 and 7.48 X 10-2 colony forming unit/donor cells. Plasmid isolation was only successful in one out of the two tested isolates. However, low transformation efficiency (59.7 transformants/microgram plasmid DNA) of such plasmids was obtained. Negative regulators of autolysis, such as arlR, lytR and lrgB, as well as cell-wall associated genes, such as pbp4 and/or pbp2, were detected in staphylococcus isolates with reduced susceptibility to the tested glycopeptides. Concerning rifampicin resistance genes, rpoBstaph was detected in 75 percent of the tested staphylococcus isolates. It could be concluded that in vitro studies emphasized the usefulness of the combination of vancomycin or teicoplanin with gentamicin or rifampicin, as well as that of gentamicin with rifampicin, against staphylococci showing varying resistance patterns. However, further in vivo studies are required to ensure the safety and efficacy of such combinations. Diclofenac sodium can act as an inducer of resistance to glycopeptides in staphylococci. Cell-wall thickness is a major contributor to such resistance among them. Gentamicin resistance in these strains could be chromosomally or plasmid mediated. Multiple mutations in the rpoB gene could mediate staphylococcus resistance to rifampicin.

Keywords: glycopeptides, combinations, induction, diclofenac, transmission electron microscopy, polymerase chain reaction

Procedia PDF Downloads 294
3568 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach

Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa

Abstract:

Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.

Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation

Procedia PDF Downloads 190
3567 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 135
3566 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 337
3565 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 355
3564 The Effect of Particulate Matter on Cardiomyocyte Apoptosis Through Mitochondrial Fission

Authors: Tsai-chun Lai, Szu-ju Fu, Tzu-lin Lee, Yuh-Lien Chen

Abstract:

There is much evidence that exposure to fine particulate matter (PM) from air pollution increases the risk of cardiovascular morbidity and mortality. According to previous reports, PM in the air enters the respiratory tract, contacts the alveoli, and enters the blood circulation, leading to the progression of cardiovascular disease. PM pollution may also lead to cardiometabolic disturbances, increasing the risk of cardiovascular disease. The effects of PM on cardiac function and mitochondrial damage are currently unknown. We used mice and rat cardiomyocytes (H9c2) as animal and in vitro cell models, respectively, to simulate an air pollution environment using PM. These results indicate that the apoptosis-related factor PUMA, a regulator of apoptosis upregulated by p53, is increased in mice treated with PM. Apoptosis was aggravated in cardiomyocytes treated with PM, as measured by TUNEL assay and Annexin V/PI. Western blot results showed that CASPASE3 was significantly increased and BCL2 (B-cell lymphoid 2) was significantly decreased under PM treatment. Concurrent exposure to PM increases mitochondrial reactive oxygen species (ROS) production by MitoSOX Red staining. Furthermore, using Mitotracker staining, PM treatment significantly shortened mitochondrial length, indicating mitochondrial fission. The expression of mitochondrial fission-related proteins p-DRP1 (phosphodynamics-related protein 1) and FIS1 (mitochondrial fission 1 protein) was significantly increased. Based on these results, the exposure to PM worsens mitochondrial function and leads to cardiomyocyte apoptosis.

Keywords: particulate matter, cardiomyocyte, apoptosis, mitochondria

Procedia PDF Downloads 106
3563 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 83