Search results for: limbal stem cell deficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4481

Search results for: limbal stem cell deficiency

2351 MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligoa

Authors: Anupama Sahoo, Bongyong Lee, Katia Boniface, Julien Seneschal, Sanjaya K. Sahoo, Tatsuya Seki, Chunyan Wang, Soumen Das, Xianlin Han, Michael Steppie, Sudipta Seal, Alain Taieb, Ranjan J. Perera

Abstract:

Vitiligo is a common, chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has a complex immune, genetic, environmental, and biochemical etiology, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. Here we characterized the human vitiligo cell line PIG3V and the normal human melanocytes, HEM-l by RNA-sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched miR-211, a known metabolic switch in non-pigmented melanoma cells, was severely downregulated in vitiligo cell line PIG3V and skin biopsies from vitiligo patients, while its novel predicted targets transcriptional co-activator PGC1-α (PPARGC1A), ribonucleotide reductase regulatory subunit M2 (RRM2), and serine-threonine protein kinase TAO1 (TAOK1) were reciprocally upregulated. miR-211 binds to PGC1-α 3’UTR locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated miR-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of miR-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo.

Keywords: metabolism, microRNA, mitochondria, vitiligo

Procedia PDF Downloads 349
2350 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 184
2349 Iron Influx, Its Root-Shoot Relations and Utilization Efficiency in Wheat

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Plant cultivars of the same species differ in their Fe efficiency. This paper studied the Fe influx and root-shoot relations of Fe at different growth stages in wheat. The four wheat cultivars (HD 2967, PDW 233, PBW 550 and PDW 291) were grown in pots in Badam Bagh agricultural researching farm, Kabul under two Fe treatments: (i) 0 mg Fe kg⁻¹ soil (soil with 2.7 mg kg⁻¹ of DTPA-extractable Fe) and (ii) 50 mg Fe kg⁻¹ soil. Root length (RL), shoot dry matter (SDM), Fe uptake, and soil parameters were measured at tillering and anthesis. Application of Fe significantly increased RL, root surface area, SDM, and Fe uptake in all wheat cultivars. Under Fe deficiency, wheat cv. HD 2967 produced 90% of its maximum RL and 75% of its maximum SDM. However, PDW 233 produced only 69% and 60%, respectively. Wheat cultivars HD 2967, and PDW 233 exhibited the highest and lowest value of root surface area and Fe uptake, respectively. The concentration difference in soil solution Fe between bulk soil and root surface (ΔCL) was maximum in wheat cultivar HD 2967, followed by PBW 550, PDW 291, and PDW 233. More depletion at the root surface causes steeper concentration gradients, which result in a high influx and transport of Fe towards root. Fe influx in all the wheat cultivars increased with the Fe application, but the increase was maximum, i.e., 4 times in HD 2967 and minimum, i.e., 2.8 times in PDW 233. It can be concluded that wheat cultivars HD 2967 and PBW 550 efficiently utilized Fe as compared to other cultivars. Additionally, iron efficiency of wheat cultivars depends upon uptake of each root segment, i.e., the influx, which in turn depends on depletion of Fe in the rhizosphere during vegetative phase and higher utilization efficiency of acquired Fe during reproductive phase that governs the ultimate grain yield.

Keywords: Fe efficiency, Fe influx, Fe uptake, Rhizosphere

Procedia PDF Downloads 112
2348 Egg Yolk Peptide Stimulated Osteogenic Gene Expression

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

Postmenopausal osteoporosis is characterized by low bone density which leads to increased bone fragility and greater susceptibility to fracture. Current treatments for osteoporosis are dominated by drugs that inhibit bone resorption although they also suppress bone formation that may contribute to pathogenesis of osteonecrosis. To restore the extensive bone loss, there is a great need for anabolic treatments that induce osteoblasts to build new bone. Pre-osteoblastic cells produce proteins of the extra-cellular matrix, including type I collagen at first, and then to successively produce alkaline phosphatase (ALP) and osteocalcin during differentiation to osteoblasts. Finally, osteoblasts deposit calcium. Present study investigated the effects of egg yolk peptide (EYP) on osteogenic activities and bone matrix gene expressions in human osteoblastic MG-63 cells. The effects of EYP on cell proliferation, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization were measured. The expression of osteogenic genes including COL1A1 (collagen, type I, alpha 1), ALP, BGLAP (osteocalcin), and SPP1 (secreted phosphoprotein 1, osteopontin) were measured by quantitative realtime PCR. EYP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. Furthermore, COL1A1, ALP, and SPP1 gene expressions were increased by EYP treatment. Present study suggested that EYP treatment enhanced osteogenic activities and increased bone matrix osteogenicgenes. These results could provide a mechanistic explanation for the bone-strengthening effects of EYP.

Keywords: egg yolk peptide, osteoblastic MG-63 cells, alkaline phosphatase, collagen synthesis, osteogenic genes, COL1A1, osteocalcin, osteopontin

Procedia PDF Downloads 373
2347 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 13
2346 Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database

Authors: Scott A. Ochsner, Christopher M. Watkins, Apollo McOwiti, David L. Steffen Lauren B. Becnel, Neil J. McKenna

Abstract:

Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field.

Keywords: target gene database, informatics, gene expression, transcriptomics

Procedia PDF Downloads 261
2345 Platform Integration for High-Throughput Functional Screening Applications

Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys

Abstract:

Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.

Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis

Procedia PDF Downloads 108
2344 Value-Added Tax Exemptions and Farm-Level Productivity: The Case of Rice, Millet, and Maize in Senegal

Authors: Awa Diouf

Abstract:

Since 2004, inputs specific to the agricultural sector have been exempt from VAT in Senegal. This paper measures, using the Naatal Mbay survey, the impact of this reform on agricultural productivity. The survey covers a sample of 3,122 rice, millet and maize farms for the 2016 crop year. The regressions show that tax incentives are ineffective in improving partial productivity of the land factor: the higher the share of the value of exemptions in the higher the production costs, the less productive the operation. The negative effect of the exemptions on productivity is accentuated for the most intensive agricultural area: the Senegal River Delta, and the most intensive crop: irrigated rice. This relationship could stem from a decrease in allocative efficiency: farmers have overinvested in the most accessible inputs. The loose budget constraint syndrome, therefore, explains this result: farmers who benefit more from exemptions reduce their managerial effort. The results suggest a removal of the VAT exemptions applied to finished products and agricultural inputs for a better efficiency of this tax, which typically taxes final consumption and should be neutral for the producer.

Keywords: agricultural productivity, agricultural taxation, Senegal, tax incentives

Procedia PDF Downloads 115
2343 Deciphering the Gut Microbiome's Role in Early-Life Immune Development

Authors: Xia Huo

Abstract:

Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden.

Keywords: environmental toxicants, immunotoxicity, vaccination, antibodies, children's health

Procedia PDF Downloads 36
2342 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 563
2341 Effect of Haemophilus Influenzae Type B (HIB) Vaccination on Child Anthropometry in India: Evidence from Young Lives Study

Authors: Swati Srivastava, Ashish Kumar Upadhyay

Abstract:

Haemophilus influenzae Type B (Hib) cause infections of pneumonia, meningitis, epiglottises and other invasive disease exclusively among children under age five. Occurrence of these infections may impair child growth by causing micronutrient deficiency. Using longitudinal data from first and second waves of Young Lives Study conducted in India during 2002 and 2006-07 respectively and multivariable logistic regression models (using generalised estimation equation to take into account the cluster nature of sample), this study aims to examine the impact of Hib vaccination on child anthropometric outcomes (stunting, underweight and wasting) in India. Bivariate result shows that, a higher percent of children were stunted and underweight among those who were not vaccinated against Hib (39% & 48% respectively) as compare to those who were vaccinated (31% and 39% respectively).The risk of childhood stunting and underweight was significantly lower among children who were vaccinated against Hib (odds ratio: 0.77, 95% CI: 0.62-0.96 and odds ratio: 0.79, 95% C.I: 0.64-0.98 respectively) as compare to the unvaccinated children. No significant association was found between vaccination status against Hib and childhood wasting. Moreover, in the statistical models, about 13% of stunting and 12% of underweight could be attributable to lack of vaccination against Hib in India. Study concludes that vaccination against Hib- in addition to being a major intervention for reducing childhood infectious disease and mortality- can be consider as a potential tool for reducing the burden of undernutrition in India. Therefore, the Government of India must include the vaccine against Hib into the Universal Immunization Programme in India.

Keywords: Haemophilus influenzae Type-B, Stunting, Underweight, Wasting, Young Lives Study (YLS), India

Procedia PDF Downloads 323
2340 The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells

Authors: Ismail Borazan, Ayse Celik Bedeloglu, Ali Demir, David Carroll

Abstract:

In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device.

Keywords: organic solar cells, PEDOT:PSS, polymer electrodes, resistivity

Procedia PDF Downloads 798
2339 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal

Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah

Abstract:

Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.

Keywords: technicians, knowledge, Nepal, radiation

Procedia PDF Downloads 308
2338 Antidepressant-Like Effects of EQC-34, a 5HT3 Receptor Antagonist in Neurobehavioral Mouse Model of Depression

Authors: D: Gupta, M. Radhakrishnan, Y. Kurhe, D. Thangaraj

Abstract:

Depression is among the leading causes of death worldwide. The current pharmacotherapy is associated with poor compliance, resistance and relapse, which necessitate the development of novel compounds with better efficacy. The present study designed and synthesized EQC-34 (N-cyclohexyl-3-ethoxyquinoxalin-2-carboxamide) as novel serotonin type-3 (5HT3) antagonist and evaluated its antidepressant-like effects using neurobehavioral mouse model. 5HT3 antagonism (as pA2 value) was determined on the longitudinal smooth muscle of guinea-pig ileum against 2-methyl-5HT (a 5HT3 agonist). The doses were calculated by dose response of basal locomotor activity. Consequently, effects of EQC-34 on neurobehavioral parameters were measured in forced swim (FST) and tail suspension test (TST). The possible mechanism was estimated by interaction study with fluoxetine (a selective serotonin reuptake inhibitor) and mCPBG (1-(m-chlorophenyl)-biguanide, a selective 5HT3 agonist), and confirmed by potentiation of head twitch response by 5hydroxy-L-tryptophan (5HTP). EQC-34 (1-4 mg/kg, i.p.) produced significant decreased behavioral despair effects in FST and TST. It potentiated fluoxetine response, while mCPBG reduced EQC-34 activity in FST. Further, EQC-34 potentiated 5HTP induced head twitch response. EQC-34 revealed potential antidepressant-like effects, which may involve 5HT3 receptor mediated facilitation of 5HT neurotransmission, thereby reversing the pathological deficiency of monoamines (5HT) observed in depression. Thus, it may be further investigated as promising agent to improve therapeutics of depression.

Keywords: depression, forced swim test, 5HT3 receptor antagonist, serotonin

Procedia PDF Downloads 417
2337 Horizontal Bone Augmentation Using Two Membranes at Dehisced Implant Sites: A Randomized Clinical Study

Authors: Monika Bansal

Abstract:

Background: Placement of dental implant in narrow alveolar ridge is challenging to be treated. GBR procedure is currently most widely used to augment the deficient alveolar ridges and to treat the fenestration and dehiscence around dental implants. Thus, the objectives of the present study were to evaluate as well as compare the clinical performance of collagen membrane and titanium mesh for horizontal bone augmentation at dehisced implant sites. Methods and material: Total 12 single edentulous implant sites with buccal bone deficiency in 8 subjects were equally divided and treated simultaneously with either of the two membranes and DBBM(Bio-Oss) bone graft. Primary outcome measurements in terms of defect height and defect width were made using a calibrated plastic periodontal probe. Re-entry surgery was performed to remeasure the augmented site and to remove Ti-mesh at 6th month. Independent paired t-tests for the inter-group comparison and student-paired t-tests for the intra-group comparison were performed. The differences were considered to be significant at p ≤ 0.05. Results: Mean defect fill with respect to height and width was 3.50 ± 0.54 mm (87%) and 2.33 ± 0.51 mm (82%) for collagen membrane and 3.83 ± 0.75 mm (92%) and 2.50 ± 0.54 mm (88%) for Ti-mesh group respectively. Conclusions: Within the limitation of the study, it was concluded that mean defect height and width after 6 months were statistically significant within the group without significant difference between them, although defect resolution was better in Ti-mesh.

Keywords: collagen membrane, dehiscence, dental implant, horizontal bone, augmentation, ti-mesh

Procedia PDF Downloads 87
2336 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 346
2335 Emerging Therapeutic Approach with Dandelion Phytochemicals in Breast Cancer Treatment

Authors: Angel Champion, Sadia Kanwal, Rafat Siddiqui

Abstract:

Harnessing phytochemicals from plant sources presents a novel opportunity to prevent or treat malignant diseases, including breast cancer. Chemotherapy lacks precision in targeting cancerous cells while sparing normal cells, but a phytopharmaceutical approach may offer a solution. Dandelion, a common weed plant, is rich in phytochemicals and provides a safer, more cost-effective alternative with lower toxicity than traditional pharmaceuticals for conditions such as breast cancer. In this study, an in-vitro experiment will be conducted using the ethanol extract of Dandelion on triple-negative MDA-231 breast cancer cell lines. The polyphenolic analysis revealed that the Dandelion extract, particularly from the root and leaf (both cut and sifted), had the most potent antioxidant properties and exhibited the most potent antioxidation activity from the powdered leaf extract. The extract exhibits prospective promising effects for inducing cell proliferation and apoptosis in breast cancer cells, highlighting its potential for targeted therapeutic interventions. Standardizing methods for Dandelion use is crucial for future clinical applications in cancer treatment. Combining plant-derived compounds with cancer nanotechnology holds the potential for effective strategies in battling malignant diseases. Utilizing liposomes as carriers for phytoconstituent anti-cancer agents offers improved solubility, bioavailability, immunoregulatory effects, advancing anticancer immune function, and reducing toxicity. This integrated approach of natural products and nanotechnology has significant potential to revolutionize healthcare globally, especially in underserved communities where herbal medicine is prevalent.

Keywords: apoptosis, antioxidant activity, cancer nanotechnology, phytopharmaceutical

Procedia PDF Downloads 40
2334 Analyzing the Impact of Migration on HIV and AIDS Incidence Cases in Malaysia

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

The human immunodeficiency virus (HIV) that causes acquired immune deficiency syndrome (AIDS) remains a global cause of morbidity and mortality. It has caused panic since its emergence. Relationships between migration and HIV/AIDS have become complex. In the absence of prospectively designed studies, dynamic mathematical models that take into account the migration movement which will give very useful information. We have explored the utility of mathematical models in understanding transmission dynamics of HIV and AIDS and in assessing the magnitude of how migration has impact on the disease. The model was calibrated to HIV and AIDS incidence data from Malaysia Ministry of Health from the period of 1986 to 2011 using Bayesian analysis with combination of Markov chain Monte Carlo method (MCMC) approach to estimate the model parameters. From the estimated parameters, the estimated basic reproduction number was 22.5812. The rate at which the susceptible individual moved to HIV compartment has the highest sensitivity value which is more significant as compared to the remaining parameters. Thus, the disease becomes unstable. This is a big concern and not good indicator from the public health point of view since the aim is to stabilize the epidemic at the disease-free equilibrium. However, these results suggest that the government as a policy maker should make further efforts to curb illegal activities performed by migrants. It is shown that our models reflect considerably the dynamic behavior of the HIV/AIDS epidemic in Malaysia and eventually could be used strategically for other countries.

Keywords: epidemic model, reproduction number, HIV, MCMC, parameter estimation

Procedia PDF Downloads 351
2333 Identification of Promiscuous Epitopes for Cellular Immune Responses in the Major Antigenic Protein Rv3873 Encoded by Region of Difference 1 of Mycobacterium tuberculosis

Authors: Abu Salim Mustafa

Abstract:

Rv3873 is a relatively large size protein (371 amino acids in length) and its gene is located in the immunodominant genomic region of difference (RD)1 that is present in the genome of Mycobacterium tuberculosis but deleted from the genomes of all the vaccine strains of Bacillus Calmette Guerin (BCG) and most other mycobacteria. However, when tested for cellular immune responses using peripheral blood mononuclear cells from tuberculosis patients and BCG-vaccinated healthy subjects, this protein was found to be a major stimulator of cell mediated immune responses in both groups of subjects. In order to further identify the sequence of immunodominant epitopes and explore their Human Leukocyte Antigen (HLA)-restriction for epitope recognition, 24 peptides (25-mers overlapping with the neighboring peptides by 10 residues) covering the sequence of Rv3873 were synthesized chemically using fluorenylmethyloxycarbonyl chemistry and tested in cell mediated immune responses. The results of these experiments helped in the identification of an immunodominant peptide P9 that was recognized by people expressing varying HLA-DR types. Furthermore, it was also predicted to be a promiscuous binder with multiple epitopes for binding to HLA-DR, HLA-DP and HLA-DQ alleles of HLA-class II molecules that present antigens to T helper cells, and to HLA-class I molecules that present antigens to T cytotoxic cells. In addition, the evaluation of peptide P9 using an immunogenicity predictor server yielded a high score (0.94), which indicated a greater probability of this peptide to elicit a protective cellular immune response. In conclusion, P9, a peptide with multiple epitopes and ability to bind several HLA class I and class II molecules for presentation to cells of the cellular immune response, may be useful as a peptide-based vaccine against tuberculosis.

Keywords: mycobacterium tuberculosis, PPE68, peptides, vaccine

Procedia PDF Downloads 120
2332 Follicular Fluid Proteins and Cells Study on Small, Medium, and Large Follicles of Large White Pig

Authors: Mayuva Youngsabanant-Areekijseree, Chanikarn Srinark, S. Sengsai, Mayuree Pumipaiboon

Abstract:

Our project was aimed at morphology of oocytes, follicle cells and follicular fluid proteins study of Large White pig (at local slaughter house in Nakhon Pathom Province). The porcine oocytes and follicular fluid of healthy small follicles (1-2 mm), medium follicles (3-6 mm in diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected from the ovary by sterile technique. Then, the oocytes and the follicle cells were separated from the fluid. The oocytes were round shape and surrounded by zona pellucida with numerous layers of cumulus cells. Based on the number of cumulus cell layers surrounding oocytes, the oocytes were classified into 5 types, which were intact-, multi-, partial-cumulus layer oocyte, completely denuded oocyte and degenerative oocyte. The collected oocytes showed high percentages of intact- and multi- cumulus cell layers in the small follicles (53.48%) medium follicles (56.94%) and large follicles (56.52%) which have high potential to develop into mature oocytes in vitro. Proteins from follicular fluid of 3 size follicles were separated by SDS-PAGE and LC/MS/MS. The molecular weight of follicular fluid proteins from the small follicles were 24, 60-65, 79, 110, 140, 160, and > 220 kDa. Meanwhile, the follicular fluid protein from medium and large follicle contained 52, 65, 79, 90, 110, 120, 160, 190 and > 220 kDa. Almost all proteins played important roles in promoting and regulating growth and development of oocytes and ovulation. This finding was an initial tool for in vitro testing and applied biotechnology research. Acknowledgements: The project was funded by a grant from Silpakorn University Research & Development Institute (SURDI) and Faculty of Science, Silpakorn University, Thailand.

Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE, reproductive biology

Procedia PDF Downloads 222
2331 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser

Authors: Sharmin Ferdewsi Rakhi, AHM Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin

Abstract:

Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.

Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species

Procedia PDF Downloads 28
2330 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 379
2329 The Gap between Elite Catholic Education and Inclusive Education

Authors: Viktorija Voidogaitė

Abstract:

Catholic education is based on the belief that every human being is created in the image and likeness of God. It is also influenced by the idea that the Kingdom of Heaven belongs to the humble and vulnerable. These principles emphasize the importance of serving the most vulnerable members of the Church community and promoting inclusivity without discrimination. This perspective emphasizes the need to protect the weakest members with compassion. However, realizing such an ideal in practice proves challenging, as the shortcomings and errors prevalent in any society often stem from the actions of Christians within that society. The evolution of these connections is observed throughout the historical development of Catholic education. In some European countries, Catholic education has become elitist, with limited room for inclusivity. This creates a conspicuous gap between the principles of the Evangelical community and elite Catholic schools and gymnasiums. Some schools appear to be most inclined to educate only those students who best align with their profile, leaving those needing assistance on the margins. As we advance into the third decade of the 21st century, there emerges a fundamental consideration: whether individuals who can assist the underprivileged and the infirm are being emphasized. Yet, it remains an open question whether these individuals will also possess the willingness and capability to construct a community or society that is inclusive and accessible to all.

Keywords: inclusion, Catholic education, inclusive education, becoming

Procedia PDF Downloads 51
2328 Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite

Authors: Sanjeeb Sutradhar, Archita Patnaik

Abstract:

Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted.

Keywords: fullerene-C60, gold nanocomposites, L-Histidine, square wave voltammetry

Procedia PDF Downloads 236
2327 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 147
2326 Potassium Fertilization Improves Rice Yield in Aerobic Production System by Decreasing Panicle Sterility

Authors: Abdul Wakeel, Hafeez Ur Rehman, Muhammad Umair Mubarak

Abstract:

Rice is the second most important staple food in Pakistan after wheat. It is not only a healthy food for the people of all age groups but also a source of foreign exchange for Pakistan. Instead of bright history for Basmati rice production, we are suffering from multiple problems reducing yield and quality as well. Rice lodging and water shortage for an-aerobic rice production system is among major glitches of it. Due to water shortage an-aerobic rice production system has to be supplemented or replaced by aerobic rice system. Aerobic rice system has been adopted for production of non-basmati rice in many parts of the world. Also for basmati rice, significant efforts have been made for aerobic rice production, however still has to be improved for effective recommendations. Among two major issues for aerobic rice, weed elimination has been solved to great extent by introducing suitable herbicides, however, low yield production due weak grains and panicle sterility is still elusive. It has been reported that potassium (K) has significant role to decrease panicle sterility in cereals. Potassium deficiency is obvious for rice under aerobic rice production system due to lack of K gradient coming with irrigation water and lowered indigenous K release from soils. Therefore it was hypothesized that K application under aerobic rice production system may improve the rice yield by decreasing panicle sterility. Results from pot and field experiments confirm that application of K fertilizer significantly increased the rice grain yield due to decreased panicle sterility and improving grain health. The quality of rice was also improved by K fertilization.

Keywords: DSR, Basmati rice, aerobic, potassium

Procedia PDF Downloads 373
2325 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation

Authors: Chih-Wei Chao, Jiashing Yu

Abstract:

Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images.

Keywords: microfluidic device, H9c2, tissue engineering, 3D scaffolds

Procedia PDF Downloads 406
2324 Information Technology Impacts on the Supply Chain Performance: Case Study Approach

Authors: Kajal Zarei

Abstract:

Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.

Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification

Procedia PDF Downloads 270
2323 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 131
2322 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 436