Search results for: carbon emission factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9065

Search results for: carbon emission factor

6935 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 341
6934 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure

Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz

Abstract:

Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.

Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease

Procedia PDF Downloads 325
6933 Cu3SbS3 as Anode Material for Sodium Batteries

Authors: Atef Y. Shenouda, Fei Xu

Abstract:

Cu₃SbS₃ (CAS) was synthesized by direct solid-state reaction from elementary Cu, Sb, & S and hydrothermal reaction using thioacetamide (TAM). Crystal structure and morphology for the prepared phases of Cu₃SbS₃ were studied via X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The band gap energies are 2 and 2.2 eV for the prepared samples. The two samples are as anode for Na ion storage. They show high initial capacity to 490 mAh/g. Na cell prepared from TAM sample shows 280 mAh/g after 25 cycles vs. 60 mAh/g for elemental sample.

Keywords: Cu3SbS3, sodium batteries, thioacetamide, sulphur sources

Procedia PDF Downloads 50
6932 Analysis of the Air Pollution Behavior Registered at MACAM Net Using DOAS, Associated with High Pollution Episodes

Authors: Francisca Rojas Martínez, T. Pedro Oyola

Abstract:

The combination of the geographical and meteorological conditions of the Santiago basin are unfavorable for the circulation of atmospheric pollution, especially in the autumn and winter months. The problem of environmental pollution in the Metropolitan Region has been studied since the 1960s because the city has presented high pollution levels for most of the year, levels that have even been compared with those in cities in developed countries, This implies serious consequences for the health of the population. Two of the most important gasses present in the contamination are NO2, and O3, the highest concentrations of nitrogen dioxide are measured during the winter, in addition, it is considered as a great contribution to the fine fraction of particulate matter and as a precursor of tropospheric ozone. On the other hand, tropospheric ozone is a pollutant of photochemical origin and is strongly enhanced by solar radiation, which is why its presence in the atmosphere is more significant in the spring and summer. The measurements were made at 3 different places in Santiago, and were used different equipment; a DOAS for gasses measures, SIMCA for Black Carbon Measure and the MACAM net for particulate matter and meteorological condition. The results shows an important relation between height and presence of pollution gasses, and additionally, pollution episodes are in common low temperature (< 10 °C) and high relative humidity (> 80%), which are factors that allows the air suspension of particulate matter and focus NH4+ and NO3-.

Keywords: black carbon, DOAS, episodes, high pollution, simca

Procedia PDF Downloads 266
6931 GPS Signal Correction to Improve Vehicle Location during Experimental Campaign

Authors: L. Della Ragione, G. Meccariello

Abstract:

In recent years the progress of the automobile industry in Italy in the field of reduction of emissions values is very remarkable. Nevertheless, their evaluation and reduction is a key problem, especially in the cities, which account for more than 50% of world population. In this paper we dealt with the problem of describing a quantitative approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars.

Keywords: air pollution, driving cycles, GPS signal, vehicle location

Procedia PDF Downloads 413
6930 Study of the Landslide and Stability of Open Pit Quarry: Case of Open Pite Quarry of Chouf Amar M'sila, Algeria

Authors: Saadoun Abd Errazak, Hafssaoui Abdallah, Fredj Mohamed

Abstract:

Mining operations open induce risks of instability that can cause landslides and collapse at the bleachers slope. These risks may occur both during and after the operation phase. The magnitude of these risks depends on the mechanical and physical characteristics of the rock mass, the geometrical dimensions of ore bodies, their spatial arrangement, and the state of the operated area. If security and technology measures are not taken into account for this purpose, the environment will be affected. The main objective of this work is to assess these risks by analytical and numerical methods. The study is based on the geological, hydrogeological and geotechnical rock mass of the open pit quarry of Chouf Amar M'sila. The results obtained have allowed us to obtain an acceptable factor of safety and stability study of the open pit.

Keywords: stability, land sliding, numerical modeling, safety factor, open-pit quarry

Procedia PDF Downloads 358
6929 Heavy Metals (Pb, Cu, Fe, and Zn) Level in Shellfish (Etheria elliptica), Water, and Sediments of River Ogbese, Ondo State, Nigeria

Authors: O. O. Olawusi-Peters, O. E. Aguda, F. O. Okoye

Abstract:

Investigations on the accumulation of heavy metals in water and sediments of River Ogbese were carried out between December 2010 and February 2011 using Atomic Absorption Spectrophotometer. Etheria elliptica a sessile organism was also used to determine the concentration of heavy metal in the aquatic environmental. In water, Cu had the highest concentration (0.55–0.13 mg/l ±0.1) while in sediments, the highest value obtained was in Fe (1.46-3.89mg/l±0.27). The minimum concentrations recorded were in Pb; which was below detectable level. The result also revealed that the shell accumulated more heavy metals than the flesh of the mussel with Cu in the shell exhibiting a negative correlation with all the metals in the flesh. However, the condition factor (K) value is 6.44, an indication of good health. The length-weight relationship is expressed as W=-0.48xL 1.94 (r2=0.29) showing the growth pattern to be negatively allometric.

Keywords: condition factor, Etheria elliptica, heavy metals, River Ogbese

Procedia PDF Downloads 460
6928 Enhanced Ripening Behaviour of Manganese Doped Cadmium Selenide Quantum Dots (Mn-doped CdSe QDs)

Authors: N. A. Hamizi, M. R. Johan, Y. H. Hor, A. N. Sabri, Y. Y. A. Yong

Abstract:

In this research, Mn-doped CdSe QDs is synthesized by using paraffin liquid as the reacting solvent and oleic acid as the ligands for Cd in order to produce Mn-doped CdSe QDs in zinc-blende crystal structure. Characterization studies for synthesized Mn-doped CdSe QDs are carried out using UV-visible and photoluminescence spectroscopy. The absorption wavelengths in UV-vis test and emission wavelengths in PL test were increase with the increases in the ripening temperature and time respectively.

Keywords: semiconductor, chemical synthesis, optical properties, ripening

Procedia PDF Downloads 353
6927 Business Continuity Risk Review for a Large Petrochemical Complex

Authors: Michel A. Thomet

Abstract:

A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.

Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF

Procedia PDF Downloads 201
6926 Biochar Assisted Municipal Wastewater Treatment and Nutrient Recycling

Authors: A. Pokharel, A. Farooque, B. Acharya

Abstract:

Pyrolysis can be used for energy production from waste biomass of agriculture and forestry. Biochar is the solid byproduct of pyrolysis and its cascading use can offset the cost of the process. A wide variety of research on biochar has highlighted its ability to absorb nutrients, metal and complex compounds; filter suspended solids; enhance microorganisms’ growth; retain water and nutrients as well as to increase carbon content of soil. In addition, sustainable biochar systems are an attractive approach for carbon sequestration and total waste management cycle. Commercially available biochar from Sigma Aldrich was studied for adsorption of nitrogen from effluent of municipal wastewater treatment plant. Adsorption isotherm and breakthrough curve were determined for the biochar. Similarly, biochar’s effects in aerobic as well as anaerobic bioreactors were also studied. In both cases, the biomass was increased in presence of biochar. The amount of gas produced for anaerobic digestion of fruit mix (apple and banana) was similar but the rate of production was significantly faster in biochar fed reactors. The cumulative goal of the study is to use biochar in various wastewater treatment units like aeration tank, secondary clarifier and tertiary nutrient recovery system as well as in anaerobic digestion of the sludge to optimize utilization and add value before being used as a soil amendment.

Keywords: biochar, nutrient recyling, wastewater treatment, soil amendment

Procedia PDF Downloads 126
6925 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag

Authors: L. Pu, C. Unluer

Abstract:

MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.

Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂

Procedia PDF Downloads 175
6924 New Approaches to the Determination of the Time Costs of Movements

Authors: Dana Kristalova

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes

Procedia PDF Downloads 447
6923 Identifying Strategies for Improving Railway Services in Bangladesh

Authors: Armana Sabiha Huq, Tahmina Rahman Chowdhury

Abstract:

In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway.

Keywords: importance-performance analysis, GAP-IPA, SEM, serviceability, safety, factor analysis

Procedia PDF Downloads 124
6922 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate

Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong

Abstract:

Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.

Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols

Procedia PDF Downloads 121
6921 Geological Engineering Mapping Approach to Know Factor of Safety Distribution and Its Implication to Landslide Potential at Muria Mountain, Kudus, Central Java Province, Indonesia

Authors: Sony Hartono, Azka Decana, Vilia Yohana, Annisa Luthfianihuda, Yuni Faizah, Tati Andriani, Dewi Kania, Fachri Zulfiqar, Sugiar Yusup, Arman Nugraha

Abstract:

Landslide is a geological hazard that is quite common in some areas in Indonesia and have disadvantages impact for public around. Due to the high frequency of landslides in Indonesia, and extensive damage, landslides should be specifically noted. Landslides caused by a soil or rock unit that has been in a state of unstable slopes and not in ideal state again, so the value of ground resistance or the rock been passed by the value of the forces acting on the slope. Based on this fact, authors held a geological engineering mapping at Muria Mountain, Kudus, Central Java province which is known as an agriculture and religion tourism area. This geological engineering mapping is performed to determine landslides potential at Muria Mountain. Slopes stability will be illustrated by a number called the “factor of safety” where the number can describe how much potential a slope to fall. Slopes stability can be different depending on the physical and mechanical characteristics of the soil and slope conditions. Testing of physical and mechanical characteristics of the soil conducted in the geotechnical laboratory. The characteristics of the soil must be same when sampled as well as in the test laboratory. To meet that requirement, authors used "undisturb sample" method that will be guarantee sample will not be distracted by environtment influences. From laboratory tests on soil physical and mechanical properties obtained characteristics of the soil on a slope, and then inserted into a Geological Information Software that would generate a value of factor of safety and give a visualization slope form area of research. Then, as a result of the study, obtained a map of the ground movement distribution map and i is implications for landslides potential areas.

Keywords: factor of safety, geological engineering mapping, landslides, slope stability, soil

Procedia PDF Downloads 400
6920 Antioxidant Potential of Methanolic Extracts of Four Indian Aromatic Plants

Authors: Harleen Kaur, Richa

Abstract:

Plants produce a large variety of secondary metabolites. Phenolics are the compounds that contain hydroxyl functional group on an aromatic ring. These are chemically heterogeneous compounds. Some are soluble only in organic solvents, some are water soluble and others are large insoluble polymers. Flavonoids are one of the largest classes of plant phenolics. The carbon skeleton of a flavonoid contains 15 carbons arranged in two aromatic rings connected by a three carbon ridge. Both phenolics and flavonoids are good natural antioxidants. Four Indian aromatic plants were selected for the study i.e, Achillea species, Jasminum primulinum, Leucas cephalotes and Leonotis nepetaefolia. All the plant species were collected from Chail region of Himachal Pradesh, India. The identifying features and anatomical studies were done of the part containing the essential oils. Phenolic cotent was estimated by Folin Ciocalteu’s method and flavonoids content by aluminium chloride method. Antioxidant property was checked by using DPPH method. Maximum antioxidant potential was found in Achillea species, followed by Leonotis nepetaefolia, Jaminum primulinum and Leucas cephalotes. Phenolics and flavonoids are important compounds that serve as defences against herbivores and pathogens. Others function in attracting pollinators and absorbing harmful radiations.

Keywords: antioxidants, DPPH, flavonoids, phenolics

Procedia PDF Downloads 330
6919 Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories

Authors: Saeed Kamarian

Abstract:

In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT.

Keywords: sandwich beam, nanocomposite beam, functionally graded materials, higher-order beam theories, Mori-Tanaka approach

Procedia PDF Downloads 448
6918 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste

Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami

Abstract:

The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.

Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization

Procedia PDF Downloads 55
6917 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 288
6916 Using Hybrid Method for Inactivation of Microorganism and Enzymes in a Berry Juice

Authors: Golnoosh Torabian, P. Valtchev, F. Dehghani

Abstract:

The need for efficient nutraceutical products has been dramatically changing the approach of the industrial processes. The development of novel mild processes is highly demanded for the production of such products; especially when both quality and safety need to be guaranteed during their long shelf life. Within this research, for the first time, we investigated the effect of supercritical carbon dioxide treatment for the inactivation of microbes and enzymes in a berry juice possessing therapeutic effect. We demonstrated that a complete inactivation of microbes can be achieved at optimized conditions of treatment. However, the bottle neck of the process was represented by the unpromising inactivation of the degradative enzyme by supercritical carbon dioxide treatment. However, complete enzyme inactivation was achieved by applying two strategies: the first was optimizing juicing method by adding a mechanical step and the second strategy was addition of natural inhibitors to the juice. Overall these results demonstrate that our hybrid process has a significant effect on the inactivation of microorganism and enzymes in the fresh juice. The developed process opens the possibility for the evolution of new products with optimal nutritional and sensorial characteristics, as well as offering a competitive cost and an environmentally friendly alternative for pasteurization and extension of shelf life in a wide range of natural therapeutic products.

Keywords: hybrid method, berry juice, pasteurization, enzymes inactivation

Procedia PDF Downloads 173
6915 Waste Management in Africa

Authors: Peter Ekene Egwu

Abstract:

Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind.

Keywords: management waste material, Africa, uses of new technology to manage waste, waste management

Procedia PDF Downloads 47
6914 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 349
6913 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor

Authors: Jan Doutreloigne

Abstract:

The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.

Keywords: audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier

Procedia PDF Downloads 326
6912 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 453
6911 Psychodiagnostic Tool Development for Measurement of Social Responsibility in Ukrainian Organizations

Authors: Olena Kovalchuk

Abstract:

How to define the understanding of social responsibility issues by Ukrainian companies is a contravention question. Thus, one of the practical uses of social responsibility is a diagnostic tool development for educational, business or scientific purposes. So the purpose of this research is to develop a tool for measurement of social responsibility in organization. Methodology: A 21-item questionnaire “Organization Social Responsibility Scale” was developed. This tool was adapted for the Ukrainian sample and based on the questionnaire “Perceived Role of Ethics and Social Responsibility” which connects ethical and socially responsible behavior to different aspects of the organizational effectiveness. After surveying the respondents, the factor analysis was made by the method of main compounds with orthogonal rotation VARIMAX. On the basis of the obtained results the 21-item questionnaire was developed (Cronbach’s alpha – 0,768; Inter-Item Correlations – 0,34). Participants: 121 managers at all levels of Ukrainian organizations (57 males; 65 females) took part in the research. Results: Factor analysis showed five ethical dilemmas concerning the social responsibility and profit compatibility in Ukrainian organizations. Below we made an attempt to interpret them: — Social responsibility vs profit. Corporate social responsibility can be a way to reduce operational costs. A firm’s first priority is employees’ morale. Being ethical and socially responsible is the priority of the organization. The most loaded question is "Corporate social responsibility can reduce operational costs". Significant effect of this factor is 0.768. — Profit vs social responsibility. Efficiency is much more important to a firm than ethics or social responsibility. Making the profit is the most important concern for a firm. The dominant question is "Efficiency is much more important to a firm than whether or not the firm is seen as ethical or socially responsible". Significant effect of this factor is 0.793. — A balanced combination of social responsibility and profit. Organization with social responsibility policy is more attractive for its stakeholders. The most loaded question is "Social responsibility and profitability can be compatible". Significant effect of this factor is 0.802. — Role of Social Responsibility in the successful organizational performance. Understanding the value of social responsibility and business ethics. Well-being and welfare of the society. The dominant question is "Good ethics is often good business". Significant effect of this factor is 0.727. — Global vision of social responsibility. Issues related to global social responsibility and sustainability. Innovative approaches to poverty reduction. Awareness of climate change problems. Global vision for successful business. The dominant question is "The overall effectiveness of a business can be determined to a great extent by the degree to which it is ethical and socially responsible". Significant effect of this factor is 0.842. The theoretical contribution. The perspective of the study is to develop a tool for measurement social responsibility in organizations and to test questionnaire’s adequacy for social and cultural context. Practical implications. The research results can be applied for designing a training programme for business school students to form their global vision for successful business as well as the ability to solve ethical dilemmas in managerial practice. Researchers interested in social responsibility issues are welcome to join the project.

Keywords: corporate social responsibility, Cronbach’s alpha, ethical behaviour, psychodiagnostic tool

Procedia PDF Downloads 351
6910 Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches

Authors: Rim Ben Amor, Myriam Abidi, Moncef Gueddari

Abstract:

The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention.

Keywords: trace metals, phosphogypsum, core sediments, accumulation factor, contamination factor

Procedia PDF Downloads 130
6909 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico

Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez

Abstract:

Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).

Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth

Procedia PDF Downloads 240
6908 Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance

Authors: Abdulmagid A. Khattabi, Abdul Fatah M. Emhamed

Abstract:

The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%).

Keywords: steel low alloys high resistance, electrodes welding, tensile test

Procedia PDF Downloads 305
6907 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 30
6906 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues

Authors: Tianyu Wang, Nikita Karandikar

Abstract:

The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.

Keywords: AIS, automobile exports, maritime big data, trade flows

Procedia PDF Downloads 105