Search results for: morphological characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3398

Search results for: morphological characterization

1298 Nanosilver Loaded Biomaterial for Wound Healing Applications: In Vitro Studies

Authors: Sathish Sundar Dhilip Kumar, Nicolette Houreld, Heidi Abrahamse

Abstract:

Silver nanoparticles (AgNPs) are classified as metal-based nanomaterials and have received considerable attention globally for wound healing and tissue engineering applications. Naturally available materials are a significant source of medicinal products to treat numerous diseases; polysaccharides are among them. Polysaccharides are non-toxic, safe, and inexpensive, and it has good biocompatibility and biodegradability. Most polysaccharides are shown to have a positive effect on wound healing processes, including chitosan and gum tragacanth. The present study evaluated the improvement of cellular wound healing by nanosilver-loaded polysaccharide-based biomaterial (CGT-NS) in WS1 cells. The physicochemical properties of prepared CGT-NS were studied using different characterization techniques, and it exhibited better stability and swelling properties in various pH conditions. Surface morphology was studied using scanning electron microscopy, and it revealed the porous morphology of the synthesized CGT-NS. The synthesized biomaterial displayed acceptable antibacterial properties against Gram-positive and Gram-negative bacterial strains, and it may prevent infection. The biocompatibility of the synthesized CGT-NS biomaterial was studied in WS1 cells, where it may lead to promote increased cell adhesion and proliferation properties. Thus, the CGT-NS biomaterial has good potential as a biomaterial in wound healing applications.

Keywords: biomaterial, wound healing, nano, silver nanoparticles

Procedia PDF Downloads 183
1297 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography

Authors: Mulatu Kassie Birhanu

Abstract:

Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.

Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane

Procedia PDF Downloads 238
1296 Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer

Authors: F. Boukazouha, G. Poulin-Vittrant, M. Rguiti, M. Lethiecq

Abstract:

Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT.

Keywords: piezoelectricity, gain, dispalcement, simulations

Procedia PDF Downloads 30
1295 High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite

Authors: Mohammad Farooq Wani

Abstract:

Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient.

Keywords: ceramics, tribology, friction and wear, solid lubrication

Procedia PDF Downloads 377
1294 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets

Authors: Indu Lata Kanwar, Preeti K. Suresh

Abstract:

The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nano­scale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.

Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal

Procedia PDF Downloads 325
1293 Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)

Authors: Amine.Harbia, Hicham. Moutaabbidb, Yann. Le Godecb, Said. Benmokhtara, Mouhammed. Moutaabbida

Abstract:

This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples.

Keywords: double perovskite oxides, magnetic transitions, cation ordering, squid magnetometry

Procedia PDF Downloads 58
1292 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 182
1291 Mitigating Biofouling on Reverse Osmosis Membranes: Applying Greener Preservatives to Biofilm Treatment

Authors: Anna Curtin, Matthew Thibodeau, Heather Buckley

Abstract:

Water scarcity is characterized by a lack of access to clean and affordable drinking water, as well as water for hygienic and economic needs. The amount of people effected by water scarcity is expected to increase in the coming years due to climate change, population growth, and pollution, amongst other things. In response, scientists are pursuing cost effective drinking water treatment methods, often with a focus on alternative water sources. Desalination of seawater via reverse osmosis is one promising alternative method. Desalination of seawater via reverse osmosis, however, is limited significantly by biofouling of the filtration membrane. Biofouling is the buildup of microorganisms in a biofilm at the water-membrane interface. It clogs the membrane, decreasing the efficiency of filtration, consequently increasing operational and maintenance costs. Although effective, existing chemical treatment methods can damage the membrane, decreasing the lifespan of the membrane; create antibiotic resistance; and cause harm to humans and the environment if they pass through the membrane into the permeate. The current project focuses on applying safer preservatives used in home and personal care products to RO membranes to investigate the biofouling treatment efficacy. Currently, many of these safer preservatives have only been tested on cells in planktonic phase in suspension cultures, not on cells in biofilms. The results of suspension culture tests are not applicable to biofouling scenarios because organisms in planktonic phase in suspension cultures exhibit different morphological, chemical, and metabolic characteristics than those in a biofilm. Testing antifoulant efficacy of safer preservatives on biofilms will provide more applicable results to biofouling on RO membranes. To do this, biofilms will be grown on 96-well-plates and minimum inhibitory concentrations (MIC90) and log-reductions will be calculated for various safer preservatives. Results from these tests will be used to guide doses for tests of safer preservatives in a bench-scale RO system.

Keywords: reverse osmosis, biofouling, preservatives, antimicrobial, safer alternative, green chemistry

Procedia PDF Downloads 144
1290 Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements

Authors: Eseldin Keleb

Abstract:

In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness.

Keywords: sieving, reliability, particle size distribution, processing parameters

Procedia PDF Downloads 613
1289 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 320
1288 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 244
1287 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 383
1286 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 423
1285 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar

Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi

Abstract:

With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.

Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement

Procedia PDF Downloads 70
1284 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water

Authors: Laura Frydel

Abstract:

Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.

Keywords: adsorption, cellulose, chloroxylenol, halloysite

Procedia PDF Downloads 190
1283 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces

Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi

Abstract:

Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.

Keywords: biofilm, pathogens, hydrophobicity, motility

Procedia PDF Downloads 237
1282 Development and Characterization of Wheat Bread with Lupin Flour

Authors: Paula M. R. Correia, Marta Gonzaga, Luis M. Batista, Luísa Beirão-Costa, Raquel F. P. Guiné

Abstract:

The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.

Keywords: Lupin flour, physical-chemical properties, sensorial analysis, wheat flour

Procedia PDF Downloads 514
1281 Correlation between Calpain 1 Expression and Proliferating/Apoptotic Index and Prognostic Factors in Triple Negative Breast Cancer

Authors: Shadia Al-Bahlani, Ruqaya Al-Rashdi, Shadia Al-Sinawi, Maya Al-Bahri

Abstract:

Background: Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and Human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. The role of clapins in pathogenesis and tumor progression has been studied in certain cancer types; however, its definite role is not yet established in breast cancer especially in the TNBC subtype. Objectives: This study aims to measure calpain-1 expression and correlate this measurement with the proliferating/apoptotic index as well with the prognostic factors in TNBC patients’ tissue. Materials and Methods: Thirty nine paraffin blocks from patients diagnosed with TNBC were used to measure the expression of calpain-1 and Ki-67 (proliferating marker) proteins using immunohistochemistry. Apoptosis was assessed morphological and biochemically using conventional Haematoxylin and Eosin (H&E) staining method and terminal deoxynucleotidyl transferase-mediate dUTP nick and labeling (TUNEL) assay respectively. Data was statistically analyzed using Pearson X2 test of association. Results: Calpain-1 content was visualized in the nucleus of the TNBC cells and its expression varied from low to high among the patients tissue. Calpain expression showed no significant correlation with the proliferating/apoptotic index as well with the clinicopathological variables. Apoptotic counts quantified by H&E staining showed significant association with the apoptotic TUNEL assay, validating both approaches. Conclusion: Although calpain-1 expression showed no significant association with the clinical outcome, its variable level of expression might indicate a hidden role in breast cancer tissue. Larger number of samples and different mode of assessments are needed to fully investigate such role. Exploring the involvement of calpain-1 in cancer progression might help in considering it as a biomarker of breast cancer.

Keywords: breast cancer, calpain, apoptosis, prognosis

Procedia PDF Downloads 442
1280 Seasonal Variation in Aerosols Characteristics over Ahmedabad

Authors: Devansh Desai, Chamandeep Kaur, Nirmal Kullu, George Christopher

Abstract:

Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad.

Keywords: radiative forcing, aerosol optical depth, fine mode, coarse mode

Procedia PDF Downloads 500
1279 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods

Authors: Morteza Hadi

Abstract:

This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.

Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability

Procedia PDF Downloads 52
1278 Conventional and Computational Investigation of the Synthesized Organotin(IV) Complexes Derived from o-Vanillin and 3-Nitro-o-Phenylenediamine

Authors: Harminder Kaur, Manpreet Kaur, Akanksha Kapila, Reenu

Abstract:

Schiff base with general formula H₂L was derived from condensation of o-vanillin and 3-nitro-o-phenylenediamine. This Schiff base was used for the synthesis of organotin(IV) complexes with general formula R₂SnL [R=Phenyl or n-octyl] using equimolar quantities. Elemental analysis UV-Vis, FTIR, and multinuclear spectroscopic techniques (¹H, ¹³C, and ¹¹⁹Sn) NMR were carried out for the characterization of the synthesized complexes. These complexes were coloured and soluble in polar solvents. Computational studies have been performed to obtain the details of the geometry and electronic structures of ligand as well as complexes. Geometry of the ligands and complexes have been optimized at the level of Density Functional Theory with B3LYP/6-311G (d,p) and B3LYP/MPW1PW91 respectively followed by vibrational frequency analysis using Gaussian 09. Observed ¹¹⁹Sn NMR chemical shifts of one of the synthesized complexes showed tetrahedral geometry around Tin atom which is also confirmed by DFT. HOMO-LUMO energy distribution was calculated. FTIR, ¹HNMR and ¹³CNMR spectra were also obtained theoretically using DFT. Further IRC calculations were employed to determine the transition state for the reaction and to get the theoretical information about the reaction pathway. Moreover, molecular docking studies can be explored to ensure the anticancer activity of the newly synthesized organotin(IV) complexes.

Keywords: DFT, molecular docking, organotin(IV) complexes, o-vanillin, 3-nitro-o-phenylenediamine

Procedia PDF Downloads 160
1277 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells

Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda

Abstract:

We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells

Procedia PDF Downloads 416
1276 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.

Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes

Procedia PDF Downloads 158
1275 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry

Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter

Abstract:

The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observed

Keywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion

Procedia PDF Downloads 102
1274 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst

Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha

Abstract:

Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.

Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂

Procedia PDF Downloads 142
1273 Modification of a Natural Zeolite with a Short-Chain Quaternary Ammonium Salt in an Ultrasonication Process and Investigation of Its Ability to Eliminate Nitrate Ions: Characterization and Mechanism Study

Authors: Nona Mirzamohammadi, Bahram Nasernejad

Abstract:

This work mainly focuses on studying the mechanism governing the adsorption of tetraethylammonium bromide, a short-chain quaternary ammonium salt, on the surface of natural zeolite and to characterize modified and raw zeolites in order to study the removal of nitrate anions from water. Natural clinoptilolite, as the most common zeolite, was chosen and modified in an ultrasonication process using tetraethylammonium bromide, subsequent to being contacted with NaCl solutions. FT-IR studies indicated a peak attributed to the stretching vibrations of the –CH₂ group in the molecule of tetraethylammonium bromide in the spectrum of the modified sample. Moreover, the SEM images showed some obvious changes in the surface morphology and crystallinity of clinoptilolite after being modified. Batch adsorption experiments show that the modified zeolite is capable of removing nitrate anions, and the predominant removal mechanism is suggested to be a combination of electrostatic attraction and ion exchange since the results from the zeta potential analysis showed a decrease in the net negative charge of clinoptilolite after modification, while bromide ions were detected in the modified sample in the µXRF analysis.

Keywords: adsorption, clinoptilolite, short-chain quaternary ammonium salt, tetraethylammoniumbromide, ultrasonication

Procedia PDF Downloads 109
1272 Optical Characterization of Anisotropic Thiophene-Phenylene Co-Oligomer Micro Crystals by Spectroscopic Imaging Ellipsometry

Authors: Christian Röling, Elena Y. Poimanova, Vladimir V. Bruevich

Abstract:

Here we demonstrate a non-destructive optical technique to localize and characterize single crystals of semiconductive organic materials – Spectroscopic Imaging Ellipsometry. With a combination of microscopy and ellipsometry, it is possible to characterize even micro-sized thin film crystals on plane surface regarding anisotropy, optical properties, crystalline domains and thickness. The semiconducting thiophene-phenylene co-oligomer 1,4-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)benzene (dHex-TTPTT) crystals were grown by solvent based self-assembly technique on silicon substrate with 300 nm thermally silicon dioxide. The ellipsometric measurements were performed with an Ep4-SE (Accurion). In an ellipsometric high-contrast image of the complete sample, we have localized high-quality single crystals. After demonstrating the uniaxial anisotropy of the crystal by using Müller-Matrix imaging ellipsometry, we determined the optical axes by rotating the sample and performed spectroscopic measurements (λ = 400-700 nm) in 5 nm intervals. The optical properties were described by using a Lorentz term in the Ep4-Model. After determining the dispersion of the crystals, we converted a recorded Delta and Psi-map into a 2D thickness image. Based on a quantitative analysis of the resulting thickness map, we have calculated the height of a molecular layer (3.49 nm).

Keywords: anisotropy, ellipsometry, SCFET, thin film

Procedia PDF Downloads 251
1271 Growth and Characterization of Bis-Thiourea Nickel Barium Chloride Single Crystals

Authors: Rakesh Hajiyani, Chetan Chauhan, Harshkant Jethva, Mihir Joshi

Abstract:

Metal bis-thiourea type organo-metallic crystals are popular as non-linear optical materials. Bis-thiourea nickel barium chloride was synthesized and crystals were grown by slow aqueous solvent evaporation technique. The transparent and colorless crystals having maximum dimensions of 13 mm x 8 mm x 2.2 mm were obtained. The EDAX was carried out to estimate the content of nickel and barium in the grown crystals. The powder XRD analysis suggested orthorhombic crystal structure with unit cell parameters as: a= 9.70 Å, b= 10.68 Å and c= 17.95 Å. The FTIR spectroscopy study confirmed the presence of various functional groups. The UV-vis spectroscopy study indicated that the crystals were transparent in the visible region with 90% transmittance level further optical parameters were studied. From the TGA it was found that the crystals remained stable up to 170 0C and then decomposed through two decomposition stages. The dielectric study was carried out in the frequency range of applied field from 500 Hz to 1 MHz. The variations of dielectric constant, dielectric loss were studied with frequency. It was found that the dielectric constant and the dielectric loss decreased as the frequency of applied field increased. The results are discussed.

Keywords: crystal growth, dielectric study, optical parameters, organo-metallic crystals, powder xrd, slow evaporation technique, TGA

Procedia PDF Downloads 450
1270 Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep's Breeds

Authors: A. Ameur Ameur, F. Chougrani, M. Halbouche

Abstract:

In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn.

Keywords: Hamra, Ouled Djellal, protein polymorphism, sheep breeds

Procedia PDF Downloads 557
1269 Dematerialized Beings in Katherine Dunn's Geek Love: A Corporeal and Ethical Study under Posthumanities

Authors: Anum Javed

Abstract:

This study identifies the dynamical image of human body that continues its metamorphosis in the virtual field of reality. It calls attention to the ways where humans start co-evolving with other life forms; technology in particular and are striving to establish a realm outside the physical framework of matter. The problem exceeds the area of technological ethics by explicably and explanatorily entering the space of literary texts and criticism. Textual analysis of Geek Love (1989) by Katherine Dunn is adjoined with posthumanist perspectives of Pramod K. Nayar to beget psycho-somatic changes in man’s nature of being. It uncovers the meaning people give to their experiences in this budding social and cultural phenomena of material representation tied up with personal practices and technological innovations. It also observes an ethical, physical and psychological reassessment of man within the context of technological evolutions. The study indicates the elements that have rendered morphological freedom and new materialism in man’s consciousness. Moreover this work is inquisitive of what it means to be a human in this time of accelerating change where surgeries, implants, extensions, cloning and robotics have shaped a new sense of being. It attempts to go beyond individual’s body image and explores how objectifying media and culture have influenced people’s judgement of others on new material grounds. It further argues a decentring of the glorified image of man as an independent entity because of his energetic partnership with intelligent machines and external agents. The history of the future progress of technology is also mentioned. The methodology adopted is posthumanist techno-ethical textual analysis. This work necessitates a negotiating relationship between man and technology in order to achieve harmonic and balanced interconnected existence. The study concludes by recommending a call for an ethical set of codes to be cultivated for the techno-human habituation. Posthumanism ushers a strong need of adopting new ethics within the terminology of neo-materialist humanism.

Keywords: corporeality, dematerialism, human ethos, posthumanism

Procedia PDF Downloads 147