Search results for: welded steel plate
515 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating
Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang
Abstract:
The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying
Procedia PDF Downloads 272514 The Behaviour of Laterally Loaded Piles Installed in the Sand with Enlarged Bases
Authors: J. Omer, H. Haroglu
Abstract:
Base enlargement in piles was invented to enhance pile resistance in downward loading, but the contribution of an enlarged base to the lateral load resistance of a pile has not been fully exploited or understood. This paper presents a laboratory investigation of the lateral capacity and deformation response of small-scale steel piles with enlarged bases installed in dry sand. Static loading tests were performed on 24 model piles having different base-to-shaft diameter ratios. The piles were installed in a box filled with dry sand, and lateral loads were applied to the pile tops using a pulley system. The test piles had shaft diameters of 20 mm, 16 mm, and 10 mm; base diameters of 900 mm, 700 mm, and 500 mm. As a control, a pile without base enlargement was tested to allow comparisons with the enlarged base piles. Incremental maintained loads were applied until pile failure approached while recording pile head deflections with high-precision dial gauges. The results showed that the lateral capacity increased with an increase in base diameter, albeit by different percentages depending on the shaft diameters and embedment length in the sand. There was always an increase in lateral capacity with increasing embedment length. Also, it was observed that an enlarged pile base had deflected less at a given load when compared to the control pile. Therefore, the research demonstrated the benefits of lateral capacity and stability of enlarging a pile base.Keywords: pile foundations, enlarged base, lateral loading
Procedia PDF Downloads 155513 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein
Authors: Nasser A. Al-Shabib
Abstract:
Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.Keywords: ovomucoid, thermal treatment, solutions, surfaces
Procedia PDF Downloads 448512 Antimicrobial, Antioxidant Activities and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine
Authors: Hajir Abdllha, Alaa Mohamed, Khansa Almoniem, Naga Adam, Wdeea Alhaadi, Ahmed Elshikh, Ahmed Ali, Ismail Makuar, Anas Elnazeer, Nagat Elrofaei, Samir Abdoelftah, Monier Hemidan
Abstract:
The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923), Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study gives rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.Keywords: antimicrobial, antioxidant, Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal, Acacia tortilis
Procedia PDF Downloads 390511 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations
Authors: Abdulmohsen Alruwaili
Abstract:
A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.Keywords: nanofluid, power law model, mixed convection, thermal radiation
Procedia PDF Downloads 32510 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: circularity, diameter error, drilling canned cycle, pareto ANOVA, surface roughness
Procedia PDF Downloads 284509 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize
Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah
Abstract:
Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens
Procedia PDF Downloads 125508 Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System
Authors: Zbigniew Olczykowski
Abstract:
The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces.Keywords: arc furnaces, long-term flicker, measurement and modeling of power quality, voltage fluctuations
Procedia PDF Downloads 290507 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 416506 Antimicrobial, Antioxidant Activities, and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine
Authors: Hajir, B. Abdllha, , Alaa, I. Mohamed, Khansa, A. Almoniem, Naga, I. Adam, Wdeea, Alhaadi, Ahmed, A. Elshikh, Ahmed, J. Ali, Ismail, G. Makuar, Anas, M. Elnazeer, Nagat, A. Elrofaei, Samir, F. Abdoelftah, Monier, N. Hemidan
Abstract:
The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var.seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923) ,Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study give rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.Keywords: antimicrobial, Antioxidant, Acacia albidia, Acacia mellifera, acacia nubica, acacia seyal var.seyal, Acacia tortilis
Procedia PDF Downloads 553505 Nutritional Profile and Food Intake Trends amongst Hospital Dieted Diabetic Eye Disease Patients of India
Authors: Parmeet Kaur, Nighat Yaseen Sofi, Shakti Kumar Gupta, Veena Pandey, Rajvaedhan Azad
Abstract:
Nutritional status and prevailing blood glucose level trends amongst hospitalized patients has been linked to clinical outcome. Therefore, the present study was undertaken to assess hospitalized Diabetic Eye Disease (DED) patients' anthropometric and dietary intake trends. DED patients with type 1 or 2 diabetes > 20 years were enrolled. Actual food intake was determined by weighed food record method. Mifflin St Joer predictive equation multiplied by a combined stress and activity factor of 1.3 was applied to estimate caloric needs. A questionnaire was further administered to obtain reasons of inadequate dietary intake. Results indicated validity of joint analyses of body mass index in combination with waist circumference for clinical risk prediction. Dietary data showed a significant difference (p < 0.0005) between average daily caloric and carbohydrate intake and actual daily caloric and carbohydrate needs. Mean fasting and post-prandial plasma glucose levels were 150.71 ± 72.200 mg/dL and 219.76 ± 97.365 mg/dL, respectively. Improvement in food delivery systems and nutrition educations were indicated for reducing plate waste and to enable better understanding of dietary aspects of diabetes management. A team approach of nurses, physicians and other health care providers is required besides the expertise of dietetics professional. To conclude, findings of the present study will be useful in planning nutritional care process (NCP) for optimizing glucose control as a component of quality medical nutrition therapy (MNT) in hospitalized DED patients.Keywords: nutritional status, diabetic eye disease, nutrition care process, medical nutrition therapy
Procedia PDF Downloads 354504 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing
Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee
Abstract:
AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase
Procedia PDF Downloads 106503 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts
Authors: Thomas Wimmer, Bernhard Weigand
Abstract:
The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization
Procedia PDF Downloads 352502 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment
Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika
Abstract:
On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.Keywords: differential settlement, embankment, influence area, slope, soft soil
Procedia PDF Downloads 408501 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading
Authors: A. Siva, K. Bala Subramanian, Kinson Prabu
Abstract:
Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity
Procedia PDF Downloads 275500 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions
Authors: George Adomako Kumi
Abstract:
The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method
Procedia PDF Downloads 180499 Effect of Z-VAD-FMK on in Vitro Viability of Dog Follicles
Authors: Leda Maria Costa Pereira, Maria Denise Lopes, Nucharin Songsasen
Abstract:
Mammalian ovaries contain thousands of follicles that eventually degenerate or die after culture in vitro. Caspase-3 is a key enzyme that regulating cell death. Our objective was to examine the influence of anti-apoptotic drug Z-VAD-FMK (pan-caspase inhibitor) on in vitro viability of dog follicles within the ovarian cortex. Ovaries were obtained from prepubertal (age, 2.5–6 months) and adult (age, 8 months to 2 years) bitches and ovarian cortical fragments were recovered. The cortices were then incubated on 1.5% (w/v) agarose gel blocks within a 24-wells culture plate (three cortical pieces/well) containing Minimum Essential Medium Eagle - Alpha Modification (Alpha MEM) supplemented with 4.2 µg/ml insulin, 3.8 µg/ml transferrin, 5 ng/ml selenium, 2 mM L-glutamine, 100 µg/mL of penicillin G sodium, 100 µg/mL of streptomycin sulfate, 0.05 mM ascorbic acid, 10 ng/mL of FSH and 0.1% (w/v) polyvinyl alcohol in humidified atmosphere of 5% CO2 and 5% O2. The cortices were divided in six treatment groups: 1) 10 ng/mL EGF (EGF V0); 2) 10 ng/mL of EGF plus 1 mM Z-VAD-FMK (EGF V1); 3) 10 ng/mL of EGF and 10 mM Z-VAD-FMK (EGF V10); 4) 1 mM Z-VAD-FMK; 5) 10 mM Z-VAD-FMK and (6) no EGF and Z-VAD-FMK supplementation. Ovarian follicles within the tissues were processed for histology and assessed for follicle density, viability (based on morphology) and diameter immediately after collection (Control) or after 3 or 7 days of in vitro incubation. Comparison among fresh and culture treatment group was performed using ANOVA test. There were no differences (P > 0.05) in follicle density and viability among different culture treatments. However, there were differences in this parameter between culture days. Specifically, culturing tissue for 7 days resulted in significant reduction in follicle viability and density, regardless of treatments. We found a difference in size between culture days when these follicles were cultured using 10 mM Z-VAD-FMK or 10 ng/mL EGF (EGF V0). In sum, the finding demonstrated that Z-VAD-FMK at the dosage used in the present study does not provide the protective effect to ovarian tissue during in vitro culture. Future studies should explore different Z-VAD-FMK dosages or other anti-apoptotic agent, such as surviving in protecting ovarian follicles against cell death.Keywords: anti apoptotic drug, bitches, follicles, Z-VAD-FMK
Procedia PDF Downloads 361498 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 388497 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 203496 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos
Authors: Hatthaphone Silimanotham, Michael Henry
Abstract:
The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling
Procedia PDF Downloads 159495 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine
Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele
Abstract:
High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of the specimen, and to control the temperature. The high resonance frequency allowed to assess the behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test
Procedia PDF Downloads 176494 Optimum Structural Wall Distribution in Reinforced Concrete Buildings Subjected to Earthquake Excitations
Authors: Nesreddine Djafar Henni, Akram Khelaifia, Salah Guettala, Rachid Chebili
Abstract:
Reinforced concrete shear walls and vertical plate-like elements play a pivotal role in efficiently managing a building's response to seismic forces. This study investigates how the performance of reinforced concrete buildings equipped with shear walls featuring different shear wall-to-frame stiffness ratios aligns with the requirements stipulated in the Algerian seismic code RPA99v2003, particularly in high-seismicity regions. Seven distinct 3D finite element models are developed and evaluated through nonlinear static analysis. Engineering Demand Parameters (EDPs) such as lateral displacement, inter-story drift ratio, shear force, and bending moment along the building height are analyzed. The findings reveal two predominant categories of induced responses: force-based and displacement-based EDPs. Furthermore, as the shear wall-to-frame ratio increases, there is a concurrent increase in force-based EDPs and a decrease in displacement-based ones. Examining the distribution of shear walls from both force and displacement perspectives, model G with the highest stiffness ratio, concentrating stiffness at the building's center, intensifies induced forces. This configuration necessitates additional reinforcements, leading to a conservative design approach. Conversely, model C, with the lowest stiffness ratio, distributes stiffness towards the periphery, resulting in minimized induced shear forces and bending moments, representing an optimal scenario with maximal performance and minimal strength requirements.Keywords: dual RC buildings, RC shear walls, modeling, static nonlinear pushover analysis, optimization, seismic performance
Procedia PDF Downloads 56493 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil
Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy
Abstract:
Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli
Procedia PDF Downloads 220492 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation
Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova
Abstract:
Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.Keywords: Cu-Mn-La oxide catalysts, carbon oxide, VOCs, deep oxidation
Procedia PDF Downloads 260491 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube
Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük
Abstract:
In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method
Procedia PDF Downloads 460490 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks
Authors: Amir Mirzaei
Abstract:
The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires
Procedia PDF Downloads 79489 Microbial and Oocyst Count in Feacal Material of Broilers Birds Administered Phytochemicals (Naringin and Hesperidin)
Authors: Adeleye Oluwagbemmiga, Obuotor Tolulope, Dosumu Adebisi, Opowoye I., Olasoju M., Kolawole Amos, Egbeyale Lawrence
Abstract:
Gut Microbiota plays a vital role in animal health and welfare. This study investigated the effect of naringin and hesperidin administration on broiler birds. A total of 80 day – old broiler chicks were randomly divided into eight groups, with ten birds per group. Four groups were not inoculated but administered coccidiostat (1A), hesperidin alone (2A), naringin alone (3A) and a combination of naringin and hesperidin (4A) from day eight (8) to day fourteen (14) while four other groups (5A – 8A) were inoculated with 2 x 10⁴ oocysts per 0.5ml of Eimeria tenella on the 16th and 19th day of age after they were administered conventional antibiotics and coccidiostat, naringin (50mg/body weight), hesperidin (50mg/body weight) and a combination from day 8 - 14. McMaster counting technique was used to count the oocysts, while pour plate technique was used to determine the bacterial load. The results showed a significant increase in their performance with an average weight ranging from 1.55kg – 2.00kg, microbial load also improved with colony count values from 3.5 x 104 - 4.5 x 10⁴ CFU/ml. The study also found that the inclusion of naringin and hesperidin in the diets of broiler birds inoculated with coccidia oocysts significantly reduced the fecal oocyst counts, with the lowest count in combined treatment (8A) (10%) and indicating a lower degree of coccidiosis infection in the treated groups whereas control group (5A) had the highest oocyst count (35%). Mortality and Morbidity rate was 0% as none of the bird showed signs and symptoms. The reduction in oocyst counts could help to strengthen the immune system of broiler birds and limit the severity of coccidiosis infection, which could be an effective strategy for improving performance, immune function and mitigating the impact of coccidiosis infection in broiler birds.Keywords: gut colonization, naringin, hesperidin, eimeria tenella, broilers
Procedia PDF Downloads 87488 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment
Authors: Jana Petru, Marie Kudrnova
Abstract:
The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.Keywords: corrosion, experimental device, molten salt, steel
Procedia PDF Downloads 119487 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications
Authors: Mike R. Bambach
Abstract:
Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.Keywords: channel sections, natural fibre composites, residential stud walls, structural composites
Procedia PDF Downloads 314486 Development of an Advanced Power Ultrasonic-Assisted Drilling System
Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff
Abstract:
The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling
Procedia PDF Downloads 277