Search results for: turbulance kinetic energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8866

Search results for: turbulance kinetic energy

8686 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant

Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen

Abstract:

Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.

Keywords: PAH, PSR, energy recovery, ferro alloy furnace

Procedia PDF Downloads 277
8685 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri

Abstract:

Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity

Procedia PDF Downloads 411
8684 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 578
8683 Wave Energy: Efficient Conversion of the Big Waves

Authors: Md. Moniruzzaman

Abstract:

The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.

Keywords: anchor, electricity, floating object, pump, ship city, wave energy

Procedia PDF Downloads 90
8682 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector

Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid

Abstract:

For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.

Keywords: electricity, energy policy, energy security, Malaysia

Procedia PDF Downloads 310
8681 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation

Procedia PDF Downloads 448
8680 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations

Procedia PDF Downloads 272
8679 OmniDrive Model of a Holonomic Mobile Robot

Authors: Hussein Altartouri

Abstract:

In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.

Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot

Procedia PDF Downloads 615
8678 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 412
8677 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 71
8676 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.

Keywords: hybrid, marine current energy, tidal turbine, wave turbine

Procedia PDF Downloads 367
8675 Negative Pressure Waves in Hydraulic Systems

Authors: Fuad H. Veliev

Abstract:

Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.

Keywords: liquid systems, negative pressure, temperature, wave, metastable state

Procedia PDF Downloads 420
8674 The Use of Energy Efficiency and Renewable Energy in Building for Sustainable Development

Authors: Zakariya B. H., Idris M. I., Jungudo M. A.

Abstract:

High energy consumptions of urban settlements in Nigeria are escalating due to strong population growth and migration as a result of crises. The demand for lighting, heating, ventilation and air conditioning (LHVAC) is becoming higher. Conversely, there is a poor electricity supply to both rural and urban settlement in Nigeria. Generators were mostly used in Nigeria as a source of energy for LHVAC. Energy efficiency can be defined as any measure taken to reduce the amount of energy consumed for heating ventilation and air-conditioning (HVAC), and house hold appliances like computers, stoves, refrigerators, televisions etc. The aim of the study was to minimize energy consumption in building through the integration of energy efficiency and renewable energy in building sector. Some of the energy efficient buildings within the study area were identified, the study covers there major cities of Nigeria namely, Abuja, Kaduna and Lagos city. The cost of investment on the energy efficiency and renewable energy was determined and compared with other fossil energy source for conventional building. Findings revealed that the low energy and energy efficient buildings in Nigeria are cheaper than the conventional ones. Based on the finding of the research, construction stake holders are strongly encouraged to abandon the conventional buildings and consider energy efficiency and renewable energy in buildings.

Keywords: energy, efficiency, LHVAC, sustainable development

Procedia PDF Downloads 584
8673 Input Energy Requirements and Performance of Different Soil Tillage Systems on Yield of Maize Crop

Authors: Shafique Qadir Memon, Muhammad Safar Mirjat, Abdul Quadir Mughal, Nadeem Amjad

Abstract:

The aims of this study were to determine direct input energy and indirect energy in maize production, to evaluate the inputs energy consumption and outputs energy gained for maize production in Islamabad, Pakistan for spring 2013. Results showed that grain yield was maximum under deep tillage as compared to conventional and zero tillage. Total energy input/output were maximum in deep tillage as compared to conventional tillage while lowest in zero tillage, net energy gain were found maximum under deep tillage.

Keywords: tillage, energy, grain yield, net energy gain

Procedia PDF Downloads 467
8672 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 737
8671 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies

Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed

Abstract:

The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.

Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy

Procedia PDF Downloads 294
8670 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production

Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez

Abstract:

Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.

Keywords: CEDI, hydrogen carrier, LHHW, RDS

Procedia PDF Downloads 65
8669 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence

Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere

Abstract:

This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.

Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria

Procedia PDF Downloads 188
8668 Energy Efficiency Factors in Toll Plazas

Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria

Abstract:

Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.

Keywords: energy efficiency, toll plaza, energy consumption

Procedia PDF Downloads 552
8667 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 548
8666 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: energy management, mobile robot, robot administration, robot management, robot planning

Procedia PDF Downloads 272
8665 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 215
8664 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 327
8663 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: Torchane Lazhar

Abstract:

In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel

Procedia PDF Downloads 415
8662 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency

Procedia PDF Downloads 226
8661 Development of Mobile Application for Energy Consumption Assessment of University Buildings

Authors: MinHee Chung, BoYeob Lee, Yuri Kim, Eon Ku Rhee

Abstract:

With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application.

Keywords: energy consumption, energy performance assessment, mobile application, university buildings

Procedia PDF Downloads 550
8660 Effectiveness of Jute Geotextiles for Hill Slope Stabilization in Adverse Climatic Condition

Authors: Pradip Choudhury, Tapobrata Sanyal

Abstract:

Effectiveness of Jute Geotextiles (JGT) in hill slope management now stands substantiated. The reasons of its efficacy are attributed to its bio-degradability, hygroscopic property and its thickness. Usually open weave JGT is used for slope management. Thickness of JGT helps in reducing the velocity of surface run-off, thus curbing the extent of migration of soil particles detached as a result of kinetic energy of rain-drops and also of wind effects. Initially JGT acts as cover of the surface of slope thus protect movement of loose soil particles. Hygroscopic property of jute effects overland storage of the flow. JGT acts as mulch and creates a congenial micro-climate that fosters quick growth of vegetation on bio-degradation. In fact JGT plays an important role in bio-remediation of slope-erosion problems. Considering the environmental aftermath, JGT is the preferred option in developed countries for surface soil conservation against erosion. In India JGT has not been tried in low temperature zones at high altitudes where temperature goes below the freezing point (even below - 25° Celsius). The behavior of JGT in such low-temperature zones is not precisely known. The 16th BRTF of Project Himank of Border Roads Organization (BRO) has recently taken the initiative to try two varieties of JGT , ie, 292 gsm and 500 gsm at two different places for hill slope management in Leh, a high altitude place of about 2,660 mtrs and 4900 mtrs above MSL respectively in Jammu & Kashmir where erosion is caused more as a result of rapid movement of sand particles due to high wind (wind erosion. Soil particles of the region formed naturally by weathering of fragile rocks are usually loosely bonded (non-cohesive), undergo dissociation with the rise in wind force and kinetic energy of rain drops and are blown away by wind. Open weave JGT interestingly was observed to contain the dissociated soil particles within its pores and lend stability the affected soil mass to a great extent thus preventing its movement by extraneous agents such as wind. The paper delineates about climatic factors, type of JGT used and the prevailing site conditions with an attempt to analyze the mechanism of functioning of JGT in low temperature zones.

Keywords: climate, erosion, jutegeotextile, stabilize

Procedia PDF Downloads 434
8659 Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions

Authors: Mustafa Sertçelik, Turan Çalban, Hacali Necefoğlu, Sabri Çolak

Abstract:

In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].t

Keywords: Chevreul's salt, copper, ammonium chloride, ammonium sulphide, dissolution kinetics

Procedia PDF Downloads 312
8658 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 682
8657 Biomimetic Building Envelopes to Reduce Energy Consumption in Hot and Dry Climates

Authors: Aswitha Bachala

Abstract:

Energy shortage became a worldwide major problem since the 1970s, due to high energy consumption. Buildings are the primary energy users which consume 40% of global energy consumption, in which, 40%-50% of building’s energy usage is consumed due to its envelope. In hot and dry climates, 40% of energy is consumed only for cooling purpose, which implies major portion of energy savings can be worked through the envelopes. Biomimicry can be one solution for extracting efficient thermoregulation strategies found in nature. This paper aims to identify different biomimetic building envelopes which shall offer a higher potential to reduce energy consumption in hot and dry climates. It focuses on investigating the scope for reducing energy consumption through biomimetic approach in terms of envelopes. An in-depth research on different biomimetic building envelopes will be presented and analyzed in terms of heat absorption, in addition to, the impact it had on reducing the buildings energy consumption. This helps to understand feasible biomimetic building envelopes to mitigate heat absorption in hot and dry climates.

Keywords: biomimicry, building envelopes, energy consumption, hot and dry climate

Procedia PDF Downloads 218