Search results for: total iron binding capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13620

Search results for: total iron binding capacity

13440 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 73
13439 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 342
13438 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique

Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama

Abstract:

This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.

Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery

Procedia PDF Downloads 240
13437 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.

Keywords: brain-derived neurotrophic factor, iron, vitamin B9, vitamin B12, vitamin D

Procedia PDF Downloads 99
13436 Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-Parental Recombinant Inbred Lines in Pearl Millet

Authors: Tripti Singhal, C. Tara Satyavathi, S. P. Singh, Aruna Kumar, Mukesh Sankar S., C. Bhardwaj, Mallik M., Jayant Bhat, N. Anuradha, Nirupma Singh

Abstract:

Pearl millet is a climate-resilient nutritious crop. We report iron and zinc content QTLs from 3 divergent locations. The content of grain Fe in the RILs ranged between 36 and 114 mg/kg, and that of Zn from 20 to 106 mg/kg across the three years at over 3 locations (Delhi, Dharwad, and Jodhpur). We used SSRs to generate a linkage map using 210 F₆ RIL derived from the (PPMI 683 × PPMI 627) cross. The linkage map of 151 loci was 3403.6 cM in length. QTL analysis revealed a total of 22 QTLs for both traits at all locations. Inside QTLs, candidate genes were identified using bioinformatics approaches.

Keywords: yield, pearl millet, QTL mapping, multi-environment, RILs

Procedia PDF Downloads 121
13435 Evaluation of the Antioxidant and Antidiabetic Potential of Fruit and Vegetable Peels

Authors: E. Chiam, E. Koh, W. Teh, M. Prabhakaran

Abstract:

Fruits and vegetables (F&V) are widely eaten for their nutritional value and associated health benefits being an immense source of bioactive compounds. However, F&V peels are often discarded, and it accounts for a higher proportion of food waste. Incorporation of F&V peels as functional ingredients can add more value to food due to the higher amounts of phytochemicals present in them. In this research, methanolic extracts of different F&V peels, namely apple, orange, kiwi, grapefruit, dragon fruit, pomelo, and pumpkin are investigated for their total phenolic content (TPC) by Folin-Ciocalteau (FC) assay and the antioxidant capacity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdenum assay using UV-Vis spectroscopy. Evaluation of the α-glucosidase inhibitory assay was carried out during this study to determine the antidiabetic potential of F&V peels. Results of our study showed that grapefruit peels contained the highest total phenolic content of 477.81 ± 0.01 mg gallic acid equivalent per gram dry weight of the sample, and kiwi peel had the highest antioxidant capacity (90.51 ± 0.10 % inhibition of DPPH radical) among the different F&V peels studied. Fruit peels exhibited high α-glucosidase inhibitory activity. Comparing fruit peels with vegetable peels, it was found that fruit peels had high total phenolic content, antioxidant capacity and anti-diabetic potential compared to vegetable peels.

Keywords: polyphenolics, fruit peels, antioxidant, antidiabetic

Procedia PDF Downloads 125
13434 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 65
13433 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 42
13432 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 375
13431 A Systematic Review on Dietary Interventions for Iron Deficiency Anemia (IDA) in Under-Five Children in Nigeria

Authors: Justina Ijeoma Ezebuwa, Catherine C. Ikewuchi, Eka B. Essien, Francis C. Anacletus

Abstract:

Iron deficiency anemia (IDA) is a significant problem in Nigeria, especially in children under five. Intervention options for treating anemia in under-five children have also been the subject of research. This study aims to synthesize the evidence on dietary interventions for managing iron deficiency anemia in under-five children in Nigeria. This study uses a systematic review method to collect relevant studies to answer the research questions and a narrative synthesis to analyze and synthesize the findings of this study. Cochrane, PubMed, and ScienceDirect databases were thoroughly searched, and five (5) articles were selected for this study. The results show that dietary interventions, such as daily multi-nutrient fortified dairy-based drinks, biofortified (yellow/ white) cassava rich in pro-vitamin A, iron supplementation in foods, and ready-to-use therapeutic food (RUTF) may be relevant to the management of iron deficiency anemia in under-five children in Nigeria. The study also shows that daily multi-nutrient fortified dairy-based drinks may be more effective, feasible, and culturally acceptable for managing anemia in under-5 children in Nigeria. In addition, daily multi-nutrient fortified dairy-based drinks and ready-to-use therapeutic food (RUTF) were reported to have the potential to improve the growth, cognitive development, and overall health outcomes of under-five children with iron deficiency anemia in Nigeria. Recommendations for future studies in this research area and for public health practitioners and policymakers were provided.

Keywords: dietary intervention, iron deficiency anemia, under-five children, Nigeria

Procedia PDF Downloads 47
13430 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel

Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy

Abstract:

Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.

Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible

Procedia PDF Downloads 334
13429 Optimization in the Compressive Strength of Iron Slag Self-Compacting Concrete

Authors: Luis E. Zapata, Sergio Ruiz, María F. Mantilla, Jhon A. Villamizar

Abstract:

Sand as fine aggregate for concrete production needs a feasible substitute due to several environmental issues. In this work, a study of the behavior of self-compacting concrete mixtures under replacement of sand by iron slag from 0.0% to 50.0% of weight and variations of water/cementitious material ratio between 0.3 and 0.5 is presented. Control fresh state tests of Slump flow, T500, J-ring and L-box were determined. In the hardened state, compressive strength was determined and optimization from response surface analysis was performed. The study of the variables in the hardened state was developed based on inferential statistical analyses using central composite design methodology and posterior analyses of variance (ANOVA). An increase in the compressive strength up to 50% higher than control mixtures at 7, 14, and 28 days of maturity was the most relevant result regarding the presence of iron slag as replacement of natural sand. Considering the obtained result, it is possible to infer that iron slag is an acceptable alternative replacement material of the natural fine aggregate to be used in structural concrete.

Keywords: ANOVA, iron slag, response surface analysis, self-compacting concrete

Procedia PDF Downloads 126
13428 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach

Authors: Pius Babuna

Abstract:

Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.

Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal

Procedia PDF Downloads 67
13427 Iron Yoke Dipole with High Quality Field for Collector Ring FAIR

Authors: Tatyana Rybitskaya, Alexandr Starostenko, Kseniya Ryabchenko

Abstract:

Collector ring (CR) of FAIR project is a large acceptance storage ring and field quality plays a major role in the magnet design. The CR will use normal conducting dipole magnets. There will be 24 H-type sector magnets with a maximum field value of 1.6 T. The integrated over the length of the magnet field quality as a function of radius is ∆B.l/B.l = ±1x10⁻⁴. Below 1.6 T the value ∆B.l/B.l can be higher with a linear approximation up to ±2.5x10⁻⁴ at the field level of 0.8 T. An iron-dominated magnet with required field quality is produced with standard technology as the quality is dominated by the yoke geometry.

Keywords: conventional magnet, iron yoke dipole, harmonic terms, particle accelerators

Procedia PDF Downloads 130
13426 Preliminary Phytopharmacological Evaluation of Methanol and Petroleum Ether Extracts of Selected Vegetables of Bangladesh

Authors: A. Mohammad Abdul Motalib Momin, B. Sheikh Mohammad Adil Uddin, C. Md Mamunur Rashid, D. Sheikh Arman Mahbub, E. Mohammad Sazzad Rahman, F. Abdullah Faruque

Abstract:

The present study was designed to investigate the antioxidant and cytotoxicity potential of methanol and pet ether extracts of the Lagenaria siceraria (LM, LP), Cucumis sativus (CSM, CSP), Cucurbita maxima (CMM, CMP) plants. For the phytochemical screening, crude extract was tested for the presence of different chemical groups. In Lagenaria siceraria the following groups were identified: alkaloids, steroids, glycosides and saponins for methanol extract and alkaloids, steroids, glycosides, tannins and saponins are for pet ether extract. Glycosides, steroids, alkaloids, saponins and tannins are present in the methanol extract of Cucumis sativus; the pet ether extract has the alkaloids, steroids and saponins. Glycosides, steroids, alkaloids, saponins and tannins are present in both the methanolic and pet ether extract of Cucurbita maxima. In vitro antioxidant activity of the extracts were performed using DPPH radical scavenging, nitric oxide (NO) scavenging, total antioxidant capacity, total phenol content, total flavonoid content, and Cupric Reducing Antioxidant Capacity assays. The most prominent antioxidant activity was observed with the CSM in the DPPH free radical scavenging test with an IC50 value of 1667.23±11.00271 μg/ml as opposed to that of standard ascorbic acid (IC50 value of 15.707± 1.181 μg/ml.) In total antioxidant capacity method, CMP showed the highest activity (427.81±11.4 mg ascorbic acid/g). The total phenolic and flavonoids content were determined by Folin-Ciocalteu Reagent and aluminium chloride colorimetric method, respectively. The highest total phenols and total flavonoids content were found in CMM and LP with the value of 79.06±16.06 mg gallic acid/g & 119.0±1.41 mg quercetin/g, respectively. In nitric oxide (NO) scavenging the most prominent antioxidant activity was observed in CMM with an IC50 value of 8.119± 0.0036 μg/ml. The Cupric reducing capacity of the extracts was strong and dose dependent manner and CSM showed lowest reducing capacity. The cytotoxicity was determined by Brine shrimp lethality test and among these extracts most potent cytotoxicity was shown by CMM with LC50 value 16.98 µg/ml. The obtained results indicate that the investigated plants could be potential sources of natural antioxidants and can be used for various types of diseases.

Keywords: antioxidant, cytotoxicity, methanol, petroleum ether

Procedia PDF Downloads 555
13425 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 290
13424 Synthesis of Iron Oxide Doped Zeolite: An Antimicrobial Nanomaterial for Drinking Water Purification Applications

Authors: Muhammad Zeeshan, Rabia Nazir, Lubna Tahir

Abstract:

Low cost filter based on iron doped zeolite (Fe-Z) and pottery clay was developed for an effective and efficient treatment of the drinking water contaminated with microbes. Fe-Z was characterized using powder XRD, SEM and EDX and shown to have average particle size of 49 nm with spongy appearance. The simulated samples of water self-contaminated with six microbes (S. typhi, B. subtilus, E. coli, S. aures, K. pneumoniae, and P. aeruginosa) after treatment with Fe-Z indicated effective removal of all the microbes in less than 30 min. Equally good results were obtained when actual drinking water samples, totally unfit for human consumption, were treated with Fe-Z.

Keywords: iron doped zeolite, biological and chemical treatment, drinking water

Procedia PDF Downloads 426
13423 Corrosion Behavior of Austempered Ductile Iron Microalloyed with Boron in Rainwater

Authors: S. Gvazava, N. Khidasheli, V. Tediashvili, M. Donadze

Abstract:

The work presented in this paper studied the of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in rainwater. A range of structural states of the metal matrix was obtained by changing the regimes of thermal treantments of a high-strength cast iron. The specimens were austenised at 900 0C for 30, 60, 90, 120 minutes. Afterwards, isothermal quenching was performed at 280 and 400 0C for40 seconds. The study was carried out using weight-change (WC), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM-EDS). According to the results, corrosion resistance of the boron microallyedbainitic ADI greatly depends on the type of the bainitic matrix and the amount of the retained austenite, which is driven by diffusion permeability of interphase and intergrain boundaries.

Keywords: austempered ductile iron, corrosion behaviour, retained austenite, corrosion rate, interphase boundary, upper bainite, lower bainite

Procedia PDF Downloads 103
13422 Capacity Loss of Urban Arterial Roads under the Influence of Bus Stop

Authors: Sai Chand, Ashish Dhamaniya, Satish Chandra

Abstract:

Curbside bus stops are provided on urban roads when sufficient land is not available to construct bus bays. The present study demonstrates the effect of curbside bus stops on midblock capacity of an urban arterial road. Data were collected on seven sections of 6-lane urban arterial roads in New Delhi. Three sections were selected without any side friction to estimate the base value of capacity. Remaining four sections were with curbside bus stop. Speed and volume data were collected in field and these data were used to estimate the capacity of a section. The average base midblock capacity of a 6–lane divided urban road was found to be 6314 PCU/hr which was further referred as base capacity. Effect of curbside bus stop on midblock capacity of urban road was evaluated by comparing the capacity of a section with curbside bus stop with that of the base capacity. Finally, a mathematical relation has been developed between bus frequency and capacity loss. Also a relation has been suggested between dwell time and capacity loss. The developed relations would be very useful for practising engineers to estimate capacity loss due to bus stop.

Keywords: bus frequency, bus stops, capacity loss, urban arterial

Procedia PDF Downloads 333
13421 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization

Procedia PDF Downloads 111
13420 Parallel Magnetic Field Effect on Copper Cementation onto Rotating Iron Rod

Authors: Hamouda M. Mousa, M. Obaid, Chan Hee Park, Cheol Sang Kim

Abstract:

The rate of copper cementation on iron rod was investigated. The study was mainly dedicated to illustrate the effect of application of electromagnetic field (EMF) on the rate of cementation. The magnetic flux was placed parallel to the iron rod and different magnetic field strength was studied. The results showed that without EMF, the rate of mass transfer was correlated by the equation: Sh= 1.36 Re0. 098 Sc0.33. The application of EMF enhanced the time required to reach high percentage copper cementation by 50%. The rate of mass transfer was correlated by the equation: Sh= 2.29 Re0. 95 Sc0.33, with applying EMF. This work illustrates that the enhancement of copper recovery in presence of EMF is due to the induced motion of Fe+n in the solution which is limited in the range of rod rotation speed of 300~900 rpm. The calculation of power consumption of EMF showed that although the application of EMF partially reduced the cementation time, the reduction of power consumption due to utilization of magnetic field is comparable to the increase in power consumed by introducing magnetic field of 2462 A T/m.

Keywords: copper cementation, electromagnetic field, copper ions, iron cylinder

Procedia PDF Downloads 468
13419 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid

Authors: Byung Il You, Ryun Oh, Gyo Woo Lee

Abstract:

Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).

Keywords: manhole lid, iron frame, structural design, computer simulation

Procedia PDF Downloads 261
13418 The Application of Article 111 of the Constitution of Bangladesh in the Criminal Justice System as a Sentencing Guideline

Authors: Sadiya S. Silvee

Abstract:

Generally, the decision of the higher court is binding on its subordinate courts. As provided in Article 111 of the Constitution, 'the law declared by the Appellate Division (AD) shall be binding on the High Court Division (HCD) and the law declared by either division of the Supreme Court shall be binding on all courts subordinate to it.' This means the judicial discipline requires the HCD to follow the decision of the AD and that it is necessary for the lower tiers of courts to accept the decision of the higher tiers as a binding precedent. Analyzing the application of Article 111 of the Constitution in the criminal justice system as a sentencing guideline, the paper, by examining whether there is any consistency in decision between one HC Bench and another HC Bench, explores whether HCD can per incuriam its previous decision. In doing so, the Death Reference (DR) Cases are contemplated. Furthermore, the paper shall examine whether the Court of Session follows the decision of the HCD while using their discretion to make the choice between death and imprisonment for life under section 302 of PC. The paper argues due to the absence of any specific direction for sentencing and inconsistency in jurisprudence among the HCD; the subordinate courts are in a dilemma.

Keywords: death reference, sentencing factor, sentencing guideline, criminal justice system and constitution

Procedia PDF Downloads 153
13417 Determination of Performances of Some Mulberry (Morus spp.) Species Selected from Different Places of Turkey under Kahramanmaras Conditions

Authors: Muruvvet Ilgin, Ilknur Agca

Abstract:

Common mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species which were selected from different regions of Turkey were used as material in order to determine their performance. Therefore, phenological observations, pomological analysis (fruit size, fruit weight, fruit stalk length, acidity and TSS (Total Soluble Solids) and phytochemical properties organic acids (oxalic acid, succinic acid, citric acid, fumaric acid and malic acid) and vitamin C (ascorbic acid) total phenolics and antioxidant capacity values of mulberries) were determined. Phenological observations of seven different periods were also identified. Fruit weight values varied between 3.48 to 4.26 g. TSS contents value were from 14.36 to 21.30%, and fruit acidity was determined between 0.29 to 2.02%. The amount of ascorbic acid of Finger mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species were identified as 35.60% and 363.28%. The highest value of total phenolic contents belonged to with a finger mulberry genotypes P1 934.80 mg/100g whereas the lowest one was of purple mulberry genotypes 278.70 mg/100g. FRAP and TEAC methods were used for determination of antioxidant capacity of the values of 0.58-22.65 micromol TE/kg and 20.34-31.6 micromol TE/kg. Total phenolics contents and antioxidant capacity strongly depends on fruit color intensity with a positive correlation. The obtained results have been found to be important as a source of future pharmacological studies and pomological and breeding programs.

Keywords: mulberry, phenology, phytochemical property, pomology

Procedia PDF Downloads 213
13416 De Novo Design of Functional Metalloproteins for Biocatalytic Reactions

Authors: Ketaki D. Belsare, Nicholas F. Polizzi, Lior Shtayer, William F. DeGrado

Abstract:

Nature utilizes metalloproteins to perform chemical transformations with activities and selectivities that have long been the inspiration for design principles in synthetic and biological systems. The chemical reactivities of metalloproteins are directly linked to local environment effects produced by the protein matrix around the metal cofactor. A complete understanding of how the protein matrix provides these interactions would allow for the design of functional metalloproteins. The de novo computational design of proteins have been successfully used in design of active sites that bind metals like di-iron, zinc, copper containing cofactors; however, precisely designing active sites that can bind small molecule ligands (e.g., substrates) along with metal cofactors is still a challenge in the field. The de novo computational design of a functional metalloprotein that contains a purposefully designed substrate binding site would allow for precise control of chemical function and reactivity. Our research strategy seeks to elucidate the design features necessary to bind the cofactor protoporphyrin IX (hemin) in close proximity to a substrate binding pocket in a four helix bundle. First- and second-shell interactions are computationally designed to control orientation, electronic structure, and reaction pathway of the cofactor and substrate. The design began with a parameterized helical backbone that positioned a single histidine residue (as an axial ligand) to receive a second-shell H-bond from a Threonine on the neighboring helix. The metallo-cofactor, hemin was then manually placed in the binding site. A structural feature, pi-bulge was introduced to give substrate access to the protoporphyrin IX. These de novo metalloproteins are currently being tested for their activity towards hydroxylation and epoxidation. The de novo designed protein shows hydroxylation of aniline to 4-aminophenol. This study will help provide structural information of utmost importance in understanding de novo computational design variables impacting the functional activities of a protein.

Keywords: metalloproteins, protein design, de novo protein, biocatalysis

Procedia PDF Downloads 140
13415 Box-Behnken Design for the Biosorption of Cationic Dye from Aqueous Solution Using a Zero-Valent Iron Nano Algal Composite

Authors: V. Sivasubramanian, M. Jerold

Abstract:

The advancement of adsorption is the development of nano-biocomposite for the sorption dyes and heavy metal ions. In fact, Nanoscale zerovalent iron (NZVI) is cost-effective reducing agent and a most reliable biosorbent for the dye biosorption. In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite, a novel marine algal based biosorbent, was used for the removal of simulated crystal violet (CV) in batch mode of operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, waste water

Procedia PDF Downloads 225
13414 Stability of Total Phenolic Concentration and Antioxidant Capacity of Extracts from Pomegranate Co-Products Subjected to In vitro Digestion

Authors: Olaniyi Fawole, Umezuruike Opara

Abstract:

Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS˙+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50% ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABST˙+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50% ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS and FRAP assays, with correlation coefficients (r2) ranging between 0.930 – 0.990 whereas, the correlation between polyphenols (TPC and TFC) and radical cation scavenging activity (in ABTS) were moderately positive in duodenal digests. Findings from this study also showed that the concentration of pomegranate polyphenols and antioxidant thereof during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.

Keywords: by-product, DPPH, polyphenols, value addition

Procedia PDF Downloads 311
13413 Identification of Potential Small Molecule Inhibitors Against β-hCG for Cancer Therapy: An In-Silico Study

Authors: Shreya Sara Ittycheria, K. C. Sivakumar, Shijulal Nelson Sathi, Priya Srinivas

Abstract:

hCG, a heterodimer composed of α and β subunits, is a peptide hormone having numerous biological functions. Although hCG is expressed by placenta during pregnancy, ectopic β-hCG secretion is observed in many non-trophoblastic tumors including that of breast. In-vitro and in-vivo studies done in the lab, have proved that BRCA1 defective cancers express β-hCG and when β-hCG is expressed or supplemented, it promotes tumor progression and exhibits resistance to carboplatin and ABT888, in such cancers but not in BRCA1 wild type cancers. In cancer cells, instead of binding to its regular receptor, LH-CGR, β-hCG binds with Transforming Growth Factor Receptor 2 (TGFβRII) and phosphorylates it resulting in faster tumor progression through the Smad signaling pathway. Targeting β-hCG could be a potential therapeutic strategy for managing BRCA1 defective cancers. Here, molecular docking and dynamic simulation studies were done to identify potential small molecule inhibitors against β-hCG as there are currently no such inhibitors reported. The binding sites of TGFβRII on β-hCG were identified from the top 10 predicted complexes from Z Dock. Virtual screening of selected commercially available small molecules from various libraries such as ZINC, NCI and Life Chemicals amounting to a total of 50,025 molecules were done. Four potential small molecule inhibitors were identified, RgcbPs-1, RgcbPs-2, RgcbPs-3 and RgcbPs-4 with binding affinities -60.778 kcal/mol, -45.447 kcal/mol, -65.2268 kcal/mol and -82.040 kcal/mol respectively. Further, 100ns Molecular Dynamics (MD) simulation showed that these molecules form stable complexes with β-hCG. RgcbPs-1 maintains hydrogen bonds with Q54, L52, Q46, C100, G36, C57, C38 residues, RgcbPs-2 maintains hydrogen bonds with A83 residue, RgcbPs-3 maintains hydrogen bonds with C57, Y58, R94, G101 residues and RgcbPs-4 maintains hydrogen bonds with G36, C38, T40, C57, D99, C100, G101 and L104 residues of β-hCG all of which coincide with the TGFβRII binding site on β-hCG. These results show that these two inhibitors could be used either singly or in combination for inhibiting β-hCG from binding to TGFβRII and thereby directly inhibiting the tumorigenesis pathway.

Keywords: β-hCG, breast cancer, dynamic simulations, molecular docking, small molecule inhibitors, virtual screening.

Procedia PDF Downloads 84
13412 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration

Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan

Abstract:

Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.

Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins

Procedia PDF Downloads 98
13411 Concurrent Micronutrient Deficiencies in Lactating Mothers and Their Infants 6-23 Months of Age in Two Agro-Ecological Zones of Rural Ethiopia

Authors: Kedir Teji Roba, Thomas P. O’Connor, Tefera Belachew, Nora M. O’Brien

Abstract:

Micronutrient deficiencies of ferritin, zinc and haemoglobin are prevalent among the mothers and their infants in developing countries. But little attention has been given to these vulnerable groups. No study has been done on co-existence of the deficiencies among lactating mothers and their breast feeding infants in two different agro-ecological zones of rural Ethiopia. Methods: Data were collected from 162 lactating mothers and their breast feeding infants (aged 6-23 months) who were living in two different agro-ecological zones. The data were collected via a structured interview, anthropometric measurements, and blood test for Zinc, ferritin and anaemia. Correlation and Chi square test were used to determine the association among nutritional status and agro ecological zones. Results: Iron deficiency was found in 44.4% of the infants and 19.8% of the mothers. Zinc deficiency was found in 72.2% of the infants and 67.3% of the mothers. Of the study subject 52.5% of the infants and 19.1% of the mothers were anaemic, and 29.6% of the infants and 10.5% of the mothers had iron deficiency anaemia. Among the mothers with iron deficiency, 81.2% and 56.2% of their children were deficient in zinc and iron respectively. Similarly, among the zinc deficient mothers, 75.2% and 45.3% of their children were deficient in zinc and iron. There was a strong correlation between the micronutrient status of the mothers and the infants on status of ferritin, zinc and anaemia (P < 0.001). There is also statistically significant association between micronutrient deficiency and agro-ecological zones among the mothers (p < 0.001) but not with their infants. Deficiency in one, two, or three, micronutrients was observed in 48.1%, 16.7% and 9.9% of the mothers and 35.8%, 29.0%, and 23.5%, of their infants respectively. Conclusion: This study shows that iron and zinc deficiencies are the prevalent micronutrient deficiencies among the lactating mothers and their infants, with variation of the magnitude across the agro-ecological zones. This finding calls for a need to design effective preventive public health nutrition programs to address both the mothers’ and their infants’ needs.

Keywords: ferritin/iron, zinc, anaemia, agroecology, malnutrition

Procedia PDF Downloads 472