Search results for: targeted delivery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3015

Search results for: targeted delivery

2835 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses

Authors: Cesar Torres, Robert Briber, Nam Sun Wang

Abstract:

Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.

Keywords: contact lenses, drug delivery, controlled release, ionic surfactant

Procedia PDF Downloads 141
2834 Delivery of Sustainable Construction in South Africa – Assessing the Roles of Organisational Leadership

Authors: Ayodeji Emmanuel Oke, Mathew O. Ikuabe, Clinton O. Aigbavboa, Douglas O. Aghimien

Abstract:

The call for sustainable construction has received significant drive in recent time considering the overwhelming impacts of its adoption. However, not much has been deliberated on this subject with regards to the roles of organisational leadership in delivering sustainable construction. To this end, the study empirically scrutinised the roles of organisational leadership in delivering sustainable construction. The study adopted a quantitative approach while construction professionals formed the population of the study. A well-articulated questionnaire was used in eliciting responses from the respondents, while appropriate methods of data analysis were used. Findings from the study depicted that the major role of organisational leadership in the delivery of sustainable construction is acting as sustainability integrators. Equally revealed are the internal and external factors affecting organisational leadership in delivering sustainable construction. The study concluded by emphasizing the core roles for delivering sustainable construction by organisational leadership and further recommended that sustainable construction should serve as a prominent and focal organisation goal by organisational leadership when steering the organisation towards meeting its objectives

Keywords: organisational leadership, project delivery, roles, sustainable construction

Procedia PDF Downloads 122
2833 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 109
2832 From Paper to the Ether: The Innovative and Historical Development of Distance Education from Correspondence to On-Line Learning and Teaching in Queensland Universities over the past Century

Authors: B. Adcock, H. van Rensburg

Abstract:

Education is ever-changing to keep up with innovative technological development and the rapid acceleration of globalisation. This chapter introduces the historical development and transformation of teaching in distance education from correspondence to on-line learning in Queensland universities. It furthermore investigates changes to the delivery models of distance education that have impacted on teaching at tertiary level in Queensland, and reflects on the social changes that have taken place during the past 100 years. This includes an analysis of the following five different periods in time: Foundation period (1911-1919) including World War I; 1920-1939 including the Great Depression; 1940-1970s, including World War II and the post war reconstruction; and the current technological era (1980s to present). In Queensland, the concept of distance education was begun by the University of Queensland (UQ) in 1911, when it began offering extension courses. The introduction of modern technology, in the form of electronic delivery, dramatically changed tertiary distance education due to political initiatives. The inclusion of electronic delivery in education signifies change at many levels, including policy, pedagogy, curriculum and governance. Changes in delivery not only affect the way study materials are delivered, but also the way courses are be taught and adjustments made by academics to their teaching methods.

Keywords: distance education, innovative technological development, on line education, tertiary education

Procedia PDF Downloads 503
2831 Magnetic Bio-Nano-Fluids for Hyperthermia

Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak

Abstract:

Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.

Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron

Procedia PDF Downloads 411
2830 A Multi-Agent System for Accelerating the Delivery Process of Clinical Diagnostic Laboratory Results Using GSM Technology

Authors: Ayman M. Mansour, Bilal Hawashin, Hesham Alsalem

Abstract:

Faster delivery of laboratory test results is one of the most noticeable signs of good laboratory service and is often used as a key performance indicator of laboratory performance. Despite the availability of technology, the delivery time of clinical laboratory test results continues to be a cause of customer dissatisfaction which makes patients feel frustrated and they became careless to get their laboratory test results. The Medical Clinical Laboratory test results are highly sensitive and could harm patients especially with the severe case if they deliver in wrong time. Such results affect the treatment done by physicians if arrived at correct time efforts should, therefore, be made to ensure faster delivery of lab test results by utilizing new trusted, Robust and fast system. In this paper, we proposed a distributed Multi-Agent System to enhance and faster the process of laboratory test results delivery using SMS. The developed system relies on SMS messages because of the wide availability of GSM network comparing to the other network. The software provides the capability of knowledge sharing between different units and different laboratory medical centers. The system was built using java programming. To implement the proposed system we had many possible techniques. One of these is to use the peer-to-peer (P2P) model, where all the peers are treated equally and the service is distributed among all the peers of the network. However, for the pure P2P model, it is difficult to maintain the coherence of the network, discover new peers and ensure security. Also, security is a quite important issue since each node is allowed to join the network without any control mechanism. We thus take the hybrid P2P model, a model between the Client/Server model and the pure P2P model using GSM technology through SMS messages. This model satisfies our need. A GUI has been developed to provide the laboratory staff with the simple and easy way to interact with the system. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: multi-agent system, delivery process, GSM technology, clinical laboratory results

Procedia PDF Downloads 248
2829 Development and in vitro Characterization of Loteprednol Etabonate-Loaded Polymeric Nanoparticles for Ocular Delivery

Authors: Abhishek Kumar Sah, Preeti K. Suresh

Abstract:

Effective drug delivery to the eye is a massive challenge, due to complicated physiological ocular barriers, rapid washout by tear and nasolachrymal drainage. Thus, most of the conventional ophthalmic formulations face the problem of low ocular bioavailability. Ophthalmic drug therapy can be improved by enhancing the precorneal drug retention along with improved drug penetration. The aim of the present investigation was to develop and evaluate a biodegradable polymer poly (D, L-lactide-co-glycolide) (PLGA) coated nanoparticulate carrier of loteprednol etabonate. PLGA nanoparticles were prepared by modified emulsification/solvent diffusion method using high-speed homogenizer followed by sonication. The nanoparticles were characterized for various parameters such as particle size, zeta potential, polydispersity index, X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), in vitro drug release profile and stability. The prepared nanocarriers displayed mean particle size in the range of 271.7 to 424.4 nm, with zeta potential less than –10 mV. In vitro release in simulated tear fluid (STF) nanocarrier showed an extended release profile of loteprednol etabonate. TEM confirmed the spherical morphology and smooth surface of the particles. All the prepared formulations were found to be stable at varying temperatures.

Keywords: drug delivery, ocular delivery, polymeric nanoparticles, loteprednol etabonate

Procedia PDF Downloads 549
2828 Imported Oil Logistics to Central and Southern Europe Refineries

Authors: Vladimir Klepikov

Abstract:

Countries of Central and Southern Europe have a typical feature: oil consumption in the region exceeds own commodity production capacity by far. So crude oil import prevails in the region’s crude oil consumption structure. Transportation using marine and pipeline transport is a common method of the imported oil delivery in the region. For certain refineries, in addition to possible transportation by oil pipelines from seaports, oil is delivered from Russian oil fields. With the view to these specific features and geographic location of the region’s refineries, three ways of imported oil delivery can be singled out: oil delivery by tankers to the port and subsequent transportation by pipeline transport of the port and the refinery; oil delivery by tanker fleet to the port and subsequent transportation by oil trunk pipeline transport; oil delivery from the fields by oil trunk pipelines to refineries. Oil is also delivered by road, internal water, and rail transport. However, the volumes transported this way are negligible in comparison to the three above transportation means. Multimodal oil transportation to refineries using the pipeline and marine transport is one of the biggest cargo flows worldwide. However, in scientific publications this problem is considered mainly for certain modes of transport. Therefore, this study is topical. To elaborate an efficient transportation policy of crude oil supply to Central and Southern Europe, in this paper the geographic concentration of oil refineries was determined and the capacities of the region’s refineries were assessed. The quantitative analysis method is used as a tool. The port infrastructure and the oil trunk pipeline system capacity were assessed in terms of delivery of raw materials to the refineries. The main groups of oil consuming countries were determined. The trends of crude oil production in the region were reviewed. The changes in production capacities and volumes at refineries in the last decade were shown. Based on the revealed refining trends, the scope of possible crude oil supplies to the refineries of the region under review was forecast. The existing transport infrastructure is able to handle the increased oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, refinery capacity, tanker draft

Procedia PDF Downloads 156
2827 The Impact of High Labour Turnover on Sustainable Housing Delivery in South Africa

Authors: Azola Agrienette Mayeza, Madifedile Thasi

Abstract:

Due to the contractual nature of jobs and employment opportunities in the construction industry and the seeming surplus of potential employees in South Africa, there is a little interest on the part of employers to put in place policies to retain experienced workers. Ironically these are the workers that the companies have expended significant resources on, in terms of training and capabilities development. The construction industry has been experiencing high materials wastages and health and safety issues to score very low on the sustainability agenda as regards resources management and safety. This study carried out an assessment of the poor retention of experienced workers in the construction industry on the capacity to deliver sustainable housing in South Africa. It highlights the economic, safety and resources conservation and other benefits accruable from a high retention of key employees to the South African construction industry towards the delivery of sustainable housing. It presents data that strongly support the hypothesis that high turnover of skilled employees as a result of the industry belief of zero incentive to retain employees beyond the contractual period, is responsible for the high wastages of resources in the industry and the safety issues. A high turnover of experienced employees in the construction industry was found to impact on the industry performance in terms of timely, cost effective and quality delivery of construction projects, particularly when measured against the government sustainable housing agenda. It also results in unplanned expenses required to train replacing employees during project executions as well as company goodwill which ultimately has a huge impact on sustainable housing delivery in South Africa.

Keywords: labour turnover, construction industry, sustainable housing, materials wastage, housing delivery, South Africa

Procedia PDF Downloads 369
2826 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System

Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler

Abstract:

PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic

Keywords: drug delivery, growth factors, hMSC, liposomes, nanofibres

Procedia PDF Downloads 287
2825 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish

Authors: Saji George, Eng Khuan Seng, Christof Luda

Abstract:

Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.

Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan

Procedia PDF Downloads 280
2824 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 126
2823 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 355
2822 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 848
2821 The Study of Dissolving Microneedle Patch for Androgenetic Alopecia

Authors: Li-Yu Lee, Yu-Shuan Chen, Jun Sheng Wang, I-Ming Chu

Abstract:

Microneedle patch is a painless transdermal drug delivery method, It could solve some problems in traditional drug delivery such as digestive system causing drug metabolism and subcutaneous injection causing some side effects. Coating drug on or loading drug in microneedle can carry active ingredient through stratum corneum, also can control dose well when microneedle patch apply on localized topical area. We used hyaluronic acid to fabricate dissolvable microneedle patch and encapsulated minoxidil into microneedles. Minoxdil is a drug for exterior use that can be used to treat Androgenetic alopecia, but related commercial products have some shortcomings, for example, propylene glycol which is used to soften stratum corneum cause skin allergic reaction, comparing chemical promotion, microneedle patch provide physical way to make drugs through nature barrier of skin. In this research, we designed a two-step process to fabricate microneedle patch, that can effectively reduce drug waste, and gentle production process could maintain drug activity well. We also do in vitro test on cadaver to make sure patch has enough mechanical strength to penetrate stratum corneum. In the release test and animal test, we found microneedle patch has higher delivery efficiency than tradition way. In this study, we may determine that germinal MNs patch is a potential commodity.

Keywords: dissolving microneedles, androgenetic alopecia, minoxidil, transdermal drug delivery

Procedia PDF Downloads 278
2820 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells

Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi

Abstract:

Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery

Procedia PDF Downloads 372
2819 Need for a Tailor Made HIV Prevention Services to the Migrants Community: Evidence from Implementing Migrant Service Delivery System (MSDS) among Migrant Workers, National AIDS Control Program, and India

Authors: Debasish Chowdhury, Sunil Mekale, Sarvanamurthy Sakthivel, Sukhvinder Kaur, Rambabu Khambampati, Ashok Agarwal

Abstract:

Introduction: The migrant intervention in India was initiated during the National AIDS Control Program (NACP) Phase-2 (2002-2007). HIV Sentinel surveillance Studies (HSS) conducted in 2012-13 indicated higher HIV prevalence among migrants (0.99%) compared to general populations (0.35%). Migrants continue to bear a heightened risk of HIV infection which results from the condition and structure of the migration process. USAID PHFI-PIPPSE project in collaboration with the National AIDS Control Organization (NACO) developed a unique system called Migrant Service Delivery System (MSDS) to capture migrants profile with respect to their risk profile and to provide tailor made services to them. Description: MSDS is a web-based system, designed and implemented to increase service uptake among migrants through evidence based planning. 110 destination migrants Targeted Intervention (TI) from 11 states were selected for study with varied target populations in terms of occupations; to understand occupation related risk behaviors among the migrants. Occupation wise registration data of high risk vulnerable migrants were analyzed through MSDS for the period April 2014–June 2016. Analysis was made on specific indicators among these occupational groups to understand the risk behavior and their vulnerability to HIV and STIs. Findings: Out of total HIV positive migrant’s workers (N= 847) enrolled in MSDS HIV rate is found to be highest among Auto-Rickshaw (18.66%) followed by Daily wage laborers (14.46%), Loom workers (10.73%), Industrial workers (10.04%) and Construction worker 7.93%. With 45.14% positivity, industrial workers are found to be most vulnerable to Sexually Transmitted Infections (STIs) (N=10057) among all occupational categories followed by loom workers (16.28%), Skilled worker (Furniture, Jeweler)-7.14%, daily wage laborers (5.45%). Conclusion: MSDS is an effective tool to assess migrants’ risk and their vulnerability to HIV for designing evidence informed program. This system calls for a replication across all destination TIs by NACO for differential strategies for different occupation groups to ensure better yield through scientific planning of intervention among high risk and high vulnerable migrants.

Keywords: migrants, migrant service delivery system, risk, vulnerability

Procedia PDF Downloads 269
2818 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 526
2817 Proniosomes as a Drug Carrier for Topical Delivery of Tolnaftate

Authors: Mona Mahmoud Abou Samra, Alaa Hamed Salama, Ghada Awad, Soheir Said Mansy

Abstract:

Proniosomes are well documented for topical drug delivery and preferred over other vesicular systems because they are biodegradable, biocompatible, non-toxic, possess skin penetration ability and prolong the release of drugs by acting as depot in deeper layers of skin. Proniosome drug delivery was preferred due to improved stability of the system than niosomes. The present investigation aimed at formulation development and performance evaluation of proniosomal gel as a vesicular drug carrier system for antifungal drug tolnaftate. Proniosomes was developed using different nonionic surfactants such as span 60 and span 65 with cholesterol in different molar ratios by the Coacervation phase separation method in presence or absence of either lecithin or phospholipon 80 H. Proniosomal gel formulations of tolnaftate were characterized for vesicular shape & size, entrapment efficiency, rheological properties and release study. The effect of surfactants and additives on the entrapment efficiency, particle size and percent of drug released was studied. The selected proniosomal formulations for topical delivery of tolnaftate was subjected to a microbiological study in male rats infected with Trichophyton rubrum; the main cause of Tinea Pedis compared to the free drug and a market product and the results was recorded.

Keywords: fungal infection, proniosome, tolnaftate, trichophyton rubrum

Procedia PDF Downloads 510
2816 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 83
2815 A Relational Case-Based Reasoning Framework for Project Delivery System Selection

Authors: Yang Cui, Yong Qiang Chen

Abstract:

An appropriate project delivery system (PDS) is crucial to the success of a construction project. Case-based reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the relational case-based reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then, feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Keywords: relational cased-based reasoning, case-based reasoning, project delivery system, PDS selection

Procedia PDF Downloads 430
2814 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 168
2813 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.

Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks

Procedia PDF Downloads 431
2812 A Case Study of Assessing the Impact of Electronic Payment System on the Service Delivery of Banks in Nigeria

Authors: Idris Lawal

Abstract:

Electronic payment system is simply a payment or monetary transaction made over the internet or a network of computers. This study was carried out in order to assess how electronic payment system has impacted on banks service delivery, to examine the efficiency of electronic payment system in Nigeria and to determine the level of customer's satisfaction as a direct result of the deployment of electronic payment systems. It is an empirical study conducted using structured questionnaire distributed to officials and customers of Access Bank plc. Chi-square(x2) was adopted for the purpose of data analysis. The result of the study showed that the development of electronic payment system offer great benefit to bank customers including improved services, reduced turn-around time, ease of banking transaction, significant cost saving etc. The study recommends that customer protection laws should be properly put in place to safeguard the interest of end users of e-payment instruments.

Keywords: bank, electronic payment systems, service delivery, customer's satisfaction

Procedia PDF Downloads 395
2811 A Retrospective Review of HIV-Infected Pregnant Females with Respect to Gestational Age and Mode of Delivery: Trends over a Decade

Authors: Qurat-ul-Ain, Humaira Mehmood

Abstract:

Background: HIV infection (a global pandemic) in pregnant women has turn out to be an emerging aspect of public health because of its role in the spread of HIV infection, predominantly among children. Aim: The aim was to analyze the trends of diagnosis with respect to gestational age and an overview of the mode of delivery over ten years. Methods: A retrospective data collection from clinical records of diagnosed HIV infected pregnant females attended at HIV antenatal clinic (special clinic), at Pakistan Institute of Medical Sciences, Islamabad, for various complaints during the period of 10 years from February 2007 to December 2016 was done. Results: A total of 113 pregnancies were reported with HIV infection in 10 years. Cases diagnosed at the 1st trimester (1-12 weeks) of pregnancy were (50.4%, 57/113), at the 2nd trimester (13-26 weeks) were (24.8%, 28/113), at the 3rd trimester (27-40+ weeks) were (24.7%, 28/113). Most deliveries were by caesarean section (53.1%, 60/113), elective caesarean sections were (58.3%, 35/60) and emergency caesarean sections were (41.6%,25/60). Vaginal deliveries were (26.5%, 30/113). Reported miscarriages were (17.7%, 20/113). Conclusion: At 1st trimester, 50% of the females were diagnosed with HIV infection, and 50% remained undiagnosed at their 1st trimester. Routine antenatal HIV testing throughout the country is vastly needed for timely diagnoses and prompt treatment(antiretroviral therapy), to suppress the virus, to reduce the risk of spread of HIV infection, to plan elective caesarean section delivery and to prevent mother-to-child transmission.

Keywords: gestational age, HIV infection, mode of delivery, pregnancy

Procedia PDF Downloads 124
2810 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows

Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci

Abstract:

Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.

Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia

Procedia PDF Downloads 314
2809 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties

Authors: Azeez Yusuf, Alan Casey

Abstract:

Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.

Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome

Procedia PDF Downloads 154
2808 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 55
2807 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging

Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen

Abstract:

Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.

Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model

Procedia PDF Downloads 456
2806 Inventory Management to Minimize Storage Costs and Improve Delivery Time in a Pharmaceutical Industry

Authors: Israel Becerril Rosales, Manuel González De La Rosa, Gerardo Villa Sánchez

Abstract:

In this work, the effects that produce not having a good inventory management is analyzed, in addition of the way that how it affects the storage costs. The research began conducting the historical analysis about stored products, its storage capacity, and distribution. The results were not optimal, since in all its raw materials (RM) have overstocking, the warehouse capacity is only used by 61%, does not have a specific place for each of its RM, causing that the delivery times increases and makes difficult a cyclical inventory. These shortcomings allowed to view and select as design alternatives the inventory ABC, so that depending on the consumption of each RM would be redistributed by using economic amount requested. Also, the Delphi method to ensure the practical applicability of the proposed tool was used, taking in account comments and suggestions of the involved experts, as well as the compliance of NOM-059-SSA1-2015 good manufacturing practices of drug. With the actions implemented, the utilization rate drops of 61% to 32% capacity, it shows that the warehouse was not designed properly due to there is not an industrial engineering area.

Keywords: lead time, improve delivery, storage costs, inventory management

Procedia PDF Downloads 231