Search results for: continuous mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3321

Search results for: continuous mining

3141 External Strengthening of RC Continuous Beams Using FRP Plates: Finite Element Model

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

Fiber reinforced polymer (FRP) installation is a very effective way to repair and strengthen structures that have become structurally weak over their life span. This technique attracted the concerning of researchers during the last two decades. This paper presents a simple uniaxial nonlinear finite element model (UNFEM) able to accurately estimate the load-carrying capacity, different failure modes and the interfacial stresses of reinforced concrete (RC) continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. Results of the proposed finite element (FE) model are verified by comparing them with experimental measurements available in the literature. The agreement between numerical and experimental results is very good. Considering fracture energy of adhesive is necessary to get a realistic load carrying capacity of continuous RC beams strengthened with FRP. This simple UNFEM is able to help design engineers to model their strengthened structures and solve their problems.

Keywords: continuous beams, debonding, finite element, fibre reinforced polymer

Procedia PDF Downloads 480
3140 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 61
3139 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 117
3138 Heavy Metal Pollution of the Soils around the Mining Area near Shamlugh Town (Armenia) and Related Risks to the Environment

Authors: G. A. Gevorgyan, K. A. Ghazaryan, T. H. Derdzyan

Abstract:

The heavy metal pollution of the soils around the mining area near Shamlugh town and related risks to human health were assessed. The investigations showed that the soils were polluted with heavy metals that can be ranked by anthropogenic pollution degree as follows: Cu>Pb>As>Co>Ni>Zn. The main sources of the anthropogenic metal pollution of the soils were the copper mining area near Shamlugh town, the Chochkan tailings storage facility and the trucks transferring are from the mining area. Copper pollution degree in some observation sites was unallowable for agricultural production. The total non-carcinogenic chronic hazard index (THI) values in some places, including observation sites in Shamlugh town, were above the safe level (THI<1) for children living in this territory. Although the highest heavy metal enrichment degree in the soils was registered in case of copper, the highest health risks to humans especially children were posed by cobalt which is explained by the fact that heavy metals have different toxicity levels and penetration characteristics.

Keywords: Armenia, copper mine, heavy metal pollution of soil, health risks

Procedia PDF Downloads 414
3137 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 588
3136 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 217
3135 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 306
3134 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms

Authors: Nidhin Dani Abraham, T. K. Sri Shilpa

Abstract:

Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.

Keywords: data mining, asset liability management, BASEL III, banking

Procedia PDF Downloads 550
3133 Identification of the Relationship Between Signals in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

Understanding the dependencies between the input signal, that controls the production system and signals, that capture its output, is of a great importance in intelligent systems. The method for identification of the relationship between signals in continuous monitoring of production systems is described in the paper. The method discovers the correlation between changes in the states derived from input signals and resulting changes in the states of output signals of the production system. The method is able to handle system inertia, which determines the time shift of the relationship between the input and output.

Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems

Procedia PDF Downloads 91
3132 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 235
3131 Trace Logo: A Notation for Representing Control-Flow of Operational Process

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining research discipline bridges the gap between data mining and business process modeling and analysis, it offers the process-centric and end-to-end methods/techniques for analyzing information of real-world process detailed in operational event-logs. In this paper, we have proposed a notation called trace logo for graphically representing control-flow perspective (order of execution of activities) of process. A trace logo consists of a stack of activity names at each position, sizes of the activity name indicates their frequency in the traces and the total height of the activity depicts the information content of the position. A trace logo created from a set of aligned traces generated using Multiple Trace Alignment technique.

Keywords: consensus trace, process mining, multiple trace alignment, trace logo

Procedia PDF Downloads 345
3130 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring

Authors: Seung-Lock Seo

Abstract:

This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.

Keywords: data mining, process data, monitoring, safety, industrial processes

Procedia PDF Downloads 395
3129 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules

Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju

Abstract:

As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.

Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis

Procedia PDF Downloads 640
3128 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling

Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany

Abstract:

The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.

Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform

Procedia PDF Downloads 136
3127 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: air pollution, linear programming, mining, optimization, treatment technologies

Procedia PDF Downloads 206
3126 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.

Keywords: smartphone, brand image, perceived value, continuous usage intention

Procedia PDF Downloads 196
3125 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 166
3124 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application

Authors: Miroslav Čulík, Petr Gurný

Abstract:

This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.

Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility

Procedia PDF Downloads 546
3123 Satellite Data to Understand Changes in Carbon Dioxide for Surface Mining and Green Zone

Authors: Carla Palencia-Aguilar

Abstract:

In order to attain the 2050’s zero emissions goal, it is necessary to know the carbon dioxide changes over time either from pollution to attenuations in the mining industry versus at green zones to establish real goals and redirect efforts to reduce greenhouse effects. Two methods were used to compute the amount of CO2 tons in specific mining zones in Colombia. The former by means of NPP with MODIS MOD17A3HGF from years 2000 to 2021. The latter by using MODIS MYD021KM bands 33 to 36 with maximum values of 644 data points distributed in 7 sites corresponding to surface mineral mining of: coal, nickel, iron and limestone. The green zones selected were located at the proximities of the studied sites, but further than 1 km to avoid information overlapping. Year 2012 was selected for method 2 to compare the results with data provided by the Colombian government to determine range of values. Some data was compared with 2022 MODIS energy values and converted to kton of CO2 by using the Greenhouse Gas Equivalencies Calculator by EPA. The results showed that Nickel mining was the least pollutant with 81 kton of CO2 e.q on average and maximum of 102 kton of CO2 e.q. per year, with green zones attenuating carbon dioxide in 103 kton of CO2 on average and 125 kton maximum per year in the last 22 years. Following Nickel, there was Coal with average kton of CO2 per year of 152 and maximum of 188, values very similar to the subjacent green zones with average and maximum kton of CO2 of 157 and 190 respectively. Iron had similar results with respect to 3 Limestone sites with average values of 287 kton of CO2 for mining and 310 kton for green zones, and maximum values of 310 kton for iron mining and 356 kton for green zones. One of the limestone sites exceeded the other sites with an average value of 441 kton per year and maximum of 490 kton per year, eventhough it had higher attenuation by green zones than a close Limestore site (3.5 Km apart): 371 kton versus 281 kton on average and maximum 416 kton versus 323 kton, such vegetation contribution is not enough, meaning that manufacturing process should be improved for the most pollutant site. By comparing bands 33 to 36 for years 2012 and 2022 from January to August, it can be seen that on average the kton of CO2 were similar for mining sites and green zones; showing an average yearly balance of carbon dioxide emissions and attenuation. However, efforts on improving manufacturing process are needed to overcome the carbon dioxide effects specially during emissions’ peaks because surrounding vegetation cannot fully attenuate it.

Keywords: carbon dioxide, MODIS, surface mining, vegetation

Procedia PDF Downloads 99
3122 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques

Authors: Mei-Yi Wu, Shang-Ming Huang

Abstract:

The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.

Keywords: mobile image retrieval, text mining, product information service system, online marketing

Procedia PDF Downloads 357
3121 Real-Time Mine Safety System with the Internet of Things

Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır

Abstract:

This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.

Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures

Procedia PDF Downloads 62
3120 The Impact of Trading Switch on Price and Liquidity

Authors: Bel Abed Ines Mariem

Abstract:

Different stock markets keep changing their exchange structure for the only purpose of improving the functioning of their markets. This paper investigates the effects of the transfer from one trading category to another in the Tunisian Stock Exchange on market price and liquidity. The sample consists of 40 securities transferred from call auction to continuous auction and conversely during the period between 2004 and 2013. The methodology used is the event study. Empirical results show an interesting phenomenon observed; stocks transferred to the call system have experienced an improvement on their price and liquidity especially for less liquid ones. However, price and liquidity for stocks transferred from call system to continuous system have decreased.

Keywords: microstructure, call auction, continuous auction, price, liquidity and event study

Procedia PDF Downloads 386
3119 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials

Procedia PDF Downloads 590
3118 Effects of Continuous and Periodic Aerobic Exercises on C Reactive Protein in Overweight Women

Authors: Maesoomeh Khorshidi Mehr, Mohammad Sajadian, Shadi Alipour

Abstract:

The purpose of the present study was to compare the effects of eight weeks of continuous and periodic aerobic exercises on serum levels of CRP in overweight woman. 36 woman aged between 20 and 35 years from the city of Ahwaz were randomly selected as the sample of the study. This sample was further divided into three groups (n= 12) of continuous aerobic exercise, periodic aerobic exercise, and control. Subjects of the groups of continuous and periodic aerobic exercise participated in 8 weeks of specialized exercises while the control group subjects did not take part in any regular physical activity program. Blood samples were collected from subjects in 24 hours prior to and 48 hours past to the intervention period. Afterwards, the serum level of CRP was measured for each blood sample. Results showed that BMI and serum level of CRP both significantly reduced as a result of aerobic exercises. However, no statistically significant difference was recorded between the extent of effects of the former and latter aerobic exercise types. Eight weeks of aerobic exercise will probably result in reduced inflammation and cardiovascular diseases risk in overweight women. The reason for lack of difference between effects of continuous and periodic aerobic exercise may lie in the similarity of average intensity and length of physical administered activities.

Keywords: heart diseases, aerobic exercise, inflammation, CRP, overweight

Procedia PDF Downloads 199
3117 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)

Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim

Abstract:

This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.

Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm

Procedia PDF Downloads 401
3116 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: continuous measurement, flue gas, mercury determination, speciation

Procedia PDF Downloads 194
3115 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 76
3114 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics

Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah

Abstract:

Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.

Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics

Procedia PDF Downloads 128
3113 Fabrication of a Continuous Flow System for Biofilm Studies

Authors: Mohammed Jibrin Ndejiko

Abstract:

Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply.

Keywords: biofilm, flowcell, stainless steel, coupon

Procedia PDF Downloads 315
3112 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 463