Search results for: emotion detection
1797 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering
Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi
Abstract:
In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering
Procedia PDF Downloads 1501796 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 1421795 Tonal Pitch Structure as a Tool of Social Consolidation
Authors: Piotr Podlipniak
Abstract:
Social consolidation has often been indicated as an adaptive function of music which led to the evolution of music faculty. According to many scholars this function is possible thanks to musical rhythm that enables sensorimotor synchronization to a musical beat. The ability to synchronize to music allows performing music collectively which enhances social cohesion. However, the collective performance of music consists also in spectral synchronization that depends on musical pitch structure. Similarly to rhythmic synchronization, spectral synchronization is a result of ‘brain states alignment’ between people who collectively listen to or perform music. In order to successfully synchronize pitches performers have to adequately expect the pitch structure. The most common form of music which predominates among all human societies is tonal music. In fact tonality understood in the broadest sense as such an organization of musical pitches in which some pitch is more important than others is the only kind of musical pitch structure that has been observed in all currently known musical cultures. The perception of such a musical pitch structure elicits specific emotional reactions which are often described as tensions and relaxations. These facts provoke some important questions. What is the evolutionary reason that people use pitch structure as a form of vocal communication? Why different pitch structures elicit different emotional states independent of extra-musical context? It is proposed in the current presentation that in the course of evolution pitch structure became a human specific tool of communication the function of which is to induce emotional states such as uncertainty and cohesion. By the means of eliciting these emotions during collective music performance people are able to unconsciously give cues concerning social acceptance. This is probably one of the reasons why in all cultures people collectively perform tonal music. It is also suggested that tonal pitch structure had been invented socially before it became an evolutionary innovation of Homo sapiens. It means that a predisposition to tonally organize pitches evolved by the means of ‘Baldwin effect’ – a process in which natural selection transforms the learned response of an organism into the instinctive response. The hypothetical evolutionary scenario of the emergence of tonal pitch structure will be proposed. In this scenario social forces such as a need for closer cooperation play the crucial role.Keywords: emotion, evolution, tonality, social consolidation
Procedia PDF Downloads 3231794 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave
Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora
Abstract:
The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.Keywords: Enterococcus faecalis, image treatment, octave and network neuronal
Procedia PDF Downloads 2301793 OFDM Radar for Detecting a Rayleigh Fluctuating Target in Gaussian Noise
Authors: Mahboobeh Eghtesad, Reza Mohseni
Abstract:
We develop methods for detecting a target for orthogonal frequency division multiplexing (OFDM) based radars. As a preliminary step we introduce the target and Gaussian noise models in discrete–time form. Then, resorting to match filter (MF) we derive a detector for two different scenarios: a non-fluctuating target and a Rayleigh fluctuating target. It will be shown that a MF is not suitable for Rayleigh fluctuating targets. In this paper we propose a reduced-complexity method based on fast Fourier transfrom (FFT) for such a situation. The proposed method has better detection performance.Keywords: constant false alarm rate (CFAR), match filter (MF), fast Fourier transform (FFT), OFDM radars, Rayleigh fluctuating target
Procedia PDF Downloads 3581792 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network
Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola
Abstract:
Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.Keywords: acknowledgment-based techniques, mobile ad-hoc network, selfish nodes, reputation-based techniques
Procedia PDF Downloads 3851791 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation
Authors: Hangsik Shin
Abstract:
The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.Keywords: peak detection, photoplethysmography, sampling, signal reconstruction
Procedia PDF Downloads 3681790 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 4571789 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4121788 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 1021787 A 'Four Method Framework' for Fighting Software Architecture Erosion
Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar
Abstract:
Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.Keywords: software architecture, architecture erosion, prescriptive architecture, descriptive architecture
Procedia PDF Downloads 5001786 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health
Authors: R. Sanchez-Salcedo, N. H. Voelcker
Abstract:
Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs
Procedia PDF Downloads 171785 A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)
Procedia PDF Downloads 3201784 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms
Authors: Prabhakar Sathujoda
Abstract:
Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed
Procedia PDF Downloads 1621783 Women’s Colours in Digital Innovation
Authors: Daniel J. Patricio Jiménez
Abstract:
Digital reality demands new ways of thinking, flexibility in learning, acquisition of new competencies, visualizing reality under new approaches, generating open spaces, understanding dimensions in continuous change, etc. We need inclusive growth, where colors are not lacking, where lights do not give a distorted reality, where science is not half-truth. In carrying out this study, the documentary or bibliographic collection has been taken into account, providing a reflective and analytical analysis of current reality. In this context, deductive and inductive methods have been used on different multidisciplinary information sources. Women today and tomorrow are a strategic element in science and arts, which, under the umbrella of sustainability, implies ‘meeting current needs without detriment to future generations’. We must build new scenarios, which qualify ‘the feminine and the masculine’ as an inseparable whole, encouraging cooperative behavior; nothing is exclusive or excluding, and that is where true respect for diversity must be based. We are all part of an ecosystem, which we will make better as long as there is a real balance in terms of gender. It is the time of ‘the lifting of the veil’, in other words, it is the time to discover the pseudonyms, the women who painted, wrote, investigated, recorded advances, etc. However, the current reality demands much more; we must remove doors where they are not needed. Mass processing of data, big data, needs to incorporate algorithms under the perspective of ‘the feminine’. However, most STEM students (science, technology, engineering, and math) are men. Our way of doing science is biased, focused on honors and short-term results to the detriment of sustainability. Historically, the canons of beauty, the way of looking, of perceiving, of feeling, depended on the circumstances and interests of each moment, and women had no voice in this. Parallel to science, there is an under-representation of women in the arts, but not so much in the universities, but when we look at galleries, museums, art dealers, etc., colours impoverish the gaze and once again highlight the gender gap and the silence of the feminine. Art registers sensations by divining the future, science will turn them into reality. The uniqueness of the so-called new normality requires women to be protagonists both in new forms of emotion and thought, and in the experimentation and development of new models. This will result in women playing a decisive role in the so-called "5.0 society" or, in other words, in a more sustainable, more humane world.Keywords: art, digitalization, gender, science
Procedia PDF Downloads 1651782 Molecular Biomonitoring of Bacterial Pathogens in Wastewater
Authors: Desouky Abd El Haleem, Sahar Zaki
Abstract:
This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.Keywords: multiplex PCR, bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, Salmonella spp.
Procedia PDF Downloads 4491781 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0
Authors: Harris Niavis, Dimitra Politaki
Abstract:
The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.Keywords: blockchain, data quality, industry4.0, product quality
Procedia PDF Downloads 1891780 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform
Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy
Abstract:
A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing
Procedia PDF Downloads 1721779 Counterfeit Product Detection Using Block Chain
Authors: Sharanya C. H., Pragathi M., Vathsala R. S., Theja K. V., Yashaswini S.
Abstract:
Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original.Keywords: blockchain, ethereum, QR code
Procedia PDF Downloads 1771778 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe
Authors: Muhammad Irfan
Abstract:
The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.Keywords: populism, radicalization, de-radicalization, social media, ISIS, Taliban, shariah, jihad, Islam, Europe, political communication, terrorism, migrants, refugees, extremism, global terror, predictive analysis, early warning detection, models, strategic communication, populist narratives, Islamic extremism
Procedia PDF Downloads 1191777 Improving Screening and Treatment of Binge Eating Disorders in Pediatric Weight Management Clinic through a Quality Improvement Framework
Authors: Cristina Fernandez, Felix Amparano, John Tumberger, Stephani Stancil, Sarah Hampl, Brooke Sweeney, Amy R. Beck, Helena H Laroche, Jared Tucker, Eileen Chaves, Sara Gould, Matthew Lindquist, Lora Edwards, Renee Arensberg, Meredith Dreyer, Jazmine Cedeno, Alleen Cummins, Jennifer Lisondra, Katie Cox, Kelsey Dean, Rachel Perera, Nicholas A. Clark
Abstract:
Background: Adolescents with obesity are at higher risk of disordered eating than the general population. Detection of eating disorders (ED) is difficult. Screening questionnaires may aid in early detection of ED. Our team’s prior efforts focused on increasing ED screening rates to ≥90% using a validated 10-question adolescent binge eating disorder screening questionnaire (ADO-BED). This aim was achieved. We then aimed to improve treatment plan initiation of patients ≥12 years of age who screen positive for BED within our WMC from 33% to 70% within 12 months. Methods: Our WMC is within a tertiary-care, free-standing children’s hospital. A3, an improvement framework, was used. A multidisciplinary team (physicians, nurses, registered dietitians, psychologists, and exercise physiologists) was created. The outcome measure was documentation of treatment plan initiation of those who screen positive (goal 70%). The process measure was ADO-BED screening rate of WMC patients (goal ≥90%). Plan-Do-Study-Act (PDSA) cycle 1 included provider education on current literature and treatment plan initiation based upon ADO-BED responses. PDSA 2 involved increasing documentation of treatment plan and retrain process to providers. Pre-defined treatment plans were: 1) repeat screen in 3-6 months, 2) resources provided only, or 3) comprehensive multidisciplinary weight management team evaluation. Run charts monitored impact over time. Results: Within 9 months, 166 patients were seen in WMC. Process measure showed sustained performance above goal (mean 98%). Outcome measure showed special cause improvement from mean of 33% to 100% (n=31). Of treatment plans provided, 45% received Plan 1, 4% Plan 2, and 46% Plan 3. Conclusion: Through a multidisciplinary improvement team approach, we maintained sustained ADO-BED screening performance, and, prior to our 12-month timeline, achieved our project aim. Our efforts may serve as a model for other multidisciplinary WMCs. Next steps may include expanding project scope to other WM programs.Keywords: obesity, pediatrics, clinic, eating disorder
Procedia PDF Downloads 631776 Insider Theft Detection in Organizations Using Keylogger and Machine Learning
Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.
Abstract:
About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.Keywords: cyber security, machine learning, cyclic process, email notification
Procedia PDF Downloads 571775 Nonstationarity Modeling of Economic and Financial Time Series
Authors: C. Slim
Abstract:
Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.Keywords: stationarity, unit root tests, economic time series, ADF tests
Procedia PDF Downloads 4201774 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment
Authors: Rade M. Ciric, Sasa Mandic
Abstract:
Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work
Procedia PDF Downloads 4671773 Correlation Matrix for Automatic Identification of Meal-Taking Activity
Authors: Ghazi Bouaziz, Abderrahim Derouiche, Damien Brulin, Hélène Pigot, Eric Campo
Abstract:
Automatic ADL classification is a crucial part of ambient assisted living technologies. It allows to monitor the daily life of the elderly and to detect any changes in their behavior that could be related to health problem. But detection of ADLs is a challenge, especially because each person has his/her own rhythm for performing them. Therefore, we used a correlation matrix to extract custom rules that enable to detect ADLs, including eating activity. Data collected from 3 different individuals between 35 and 105 days allows the extraction of personalized eating patterns. The comparison of the results of the process of eating activity extracted from the correlation matrices with the declarative data collected during the survey shows an accuracy of 90%.Keywords: elderly monitoring, ADL identification, matrix correlation, meal-taking activity
Procedia PDF Downloads 931772 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network
Authors: Vinai K. Singh
Abstract:
In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans
Procedia PDF Downloads 1361771 The Diagnostic Utility and Sensitivity of the Xpert® MTB/RIF Assay in Diagnosing Mycobacterium tuberculosis in Bone Marrow Aspirate Specimens
Authors: Nadhiya N. Subramony, Jenifer Vaughan, Lesley E. Scott
Abstract:
In South Africa, the World Health Organisation estimated 454000 new cases of Mycobacterium tuberculosis (M.tb) infection (MTB) in 2015. Disseminated tuberculosis arises from the haematogenous spread and seeding of the bacilli in extrapulmonary sites. The gold standard for the detection of MTB in bone marrow is TB culture which has an average turnaround time of 6 weeks. Histological examinations of trephine biopsies to diagnose MTB also have a time delay owing mainly to the 5-7 day processing period prior to microscopic examination. Adding to the diagnostic delay is the non-specific nature of granulomatous inflammation which is the hallmark of MTB involvement of the bone marrow. A Ziehl-Neelson stain (which highlights acid-fast bacilli) is therefore mandatory to confirm the diagnosis but can take up to 3 days for processing and evaluation. Owing to this delay in diagnosis, many patients are lost to follow up or remain untreated whilst results are awaited, thus encouraging the spread of undiagnosed TB. The Xpert® MTB/RIF (Cepheid, Sunnyvale, CA) is the molecular test used in the South African national TB program as the initial diagnostic test for pulmonary TB. This study investigates the optimisation and performance of the Xpert® MTB/RIF on bone marrow aspirate specimens (BMA), a first since the introduction of the assay in the diagnosis of extrapulmonary TB. BMA received for immunophenotypic analysis as part of the investigation into disseminated MTB or in the evaluation of cytopenias in immunocompromised patients were used. Processing BMA on the Xpert® MTB/RIF was optimised to ensure bone marrow in EDTA and heparin did not inhibit the PCR reaction. Inactivated M.tb was spiked into the clinical bone marrow specimen and distilled water (as a control). A volume of 500mcl and an incubation time of 15 minutes with sample reagent were investigated as the processing protocol. A total of 135 BMA specimens had sufficient residual volume for Xpert® MTB/RIF testing however 22 specimens (16.3%) were not included in the final statistical analysis as an adequate trephine biopsy and/or TB culture was not available. Xpert® MTB/RIF testing was not affected by BMA material in the presence of heparin or EDTA, but the overall detection of MTB in BMA was low compared to histology and culture. Sensitivity of the Xpert® MTB/RIF compared to both histology and culture was 8.7% (95% confidence interval (CI): 1.07-28.04%) and sensitivity compared to histology only was 11.1% (95% CI: 1.38-34.7%). Specificity of the Xpert® MTB/RIF was 98.9% (95% CI: 93.9-99.7%). Although the Xpert® MTB/RIF generates a faster result than histology and TB culture and is less expensive than culture and drug susceptibility testing, the low sensitivity of the Xpert® MTB/RIF precludes its use for the diagnosis of MTB in bone marrow aspirate specimens and warrants alternative/additional testing to optimise the assay.Keywords: bone marrow aspirate , extrapulmonary TB, low sensitivity, Xpert® MTB/RIF
Procedia PDF Downloads 1711770 Disposable PANI-CeO2 Sensor for the Electrocatalytic Simultaneous Quantification of Amlodipine and Nebivolol
Authors: Nimisha Jadon, Rajeev Jain, Swati Sharma
Abstract:
A chemically modified carbon paste sensor has been developed for the simultaneous determination of amlodipine (AML) and nebivolol (NBV). Carbon paste electrode (CPE) was fabricated by the addition of Gr/PANI-CeO2. Gr/PANI-CeO2/CPE has achieved excellent electrocatalytic activity and sensitivity. AML and NBV exhibited oxidation peaks at 0.70 and 0.90 V respectively on Gr/ PANI-CeO2/CPE. The linearity range of AML and NBV was 0.1 to 1.6 μgmL-1 in BR buffer (pH 8.0). The Limit of detection (LOD) was 20.0 ngmL-1 for AML and 30.0 ngmL-1 for NBV and limit of quantification (LOQ) was 80.0 ngmL-1 for AML and 100 ngmL-1 for NBV respectively. These analyses were also determined in pharmaceutical formulation and human serum and good recovery was obtained for the developed method.Keywords: amlodipine, nebivolol, square wave voltammetry, carbon paste electrode, simultaneous quantification
Procedia PDF Downloads 3541769 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 1481768 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 433