Search results for: charge separation
81 Navigating Top Management Team Characteristics for Ambidexterity in Small and Medium-Sized African Businesses: The Key to Unlocking Success
Authors: Rumbidzai Sipiwe Zimvumi
Abstract:
The study aimed to identify the top management team attributes for ambidexterity in small and medium-sized enterprises by utilizing the upper echelons theory. The conventional opinion holds that an organization's ability to pursue both exploitative and explorative innovation methods at the same time is reflected in its ambidexterity. Top-level managers are critical to this matrix because they forecast and explain strategic choices that guarantee success by improving organizational performance. Since the focus of the study was on the unique characteristics of TMTs that can facilitate ambidexterity, the primary goal was to comprehend how TMTs in SMEs can better manage ambidexterity. The study used document analysis to collect information on ambidexterity and TMT traits. Finding, choosing, assessing, and synthesizing data from peer-reviewed publications allowed for the review and evaluation of papers. The fact that SMEs will perform better if they can achieve a balance between exploration and exploitation cannot be overstated. Unfortunately, exploitation is the main priority for most SMEs. The results showed that some of the noteworthy TMT traits that support ambidexterity in SMEs are age diversity, shared responsibility, leadership impact, psychological safety, and self-confidence. It has been shown that most SMEs confront significant obstacles in recruiting people, including formalizing their management and assembling executive teams with seniority. Small and medium-sized enterprises (SMEs) are often held by families or people who neglect to keep their personal lives apart from the firm, which eliminates the opportunity for management and staff to take the initiative. This helps to explain why exploitative strategies, which preserve present success, are used rather than explorative strategies, which open new economic opportunities and dimensions. It is evident that psychological safety deteriorates, and creativity is hindered in the process. The study makes the case that TMTs who are motivated to become ambidextrous can exist. According to the report, small- and medium-sized business owners should value the opinions of all parties involved and provide their managers and regular staff the freedom to think creatively and in a safe environment. TMTs who experience psychological safety are more likely to be inventive, creative, and productive. A team's collective perception that it is acceptable to take chances, voice opinions and concerns, ask questions, and own up to mistakes without fear of unfavorable outcomes is known as team psychological safety. Thus, traits like age diversity, leadership influence, learning agility, psychological safety, and self-assurance are critical to the success of SMEs. As a solution to ensuring ambidexterity is attained, the study suggests a clear separation of ownership and control, the adoption of technology to stimulate creativity, team spirit and excitement, shared accountability, and good management of diversity. Among the suggestions for the SME's success are resource allocation and important collaborations.Keywords: navigating, ambidexterity, top management team, small and medium enterprises
Procedia PDF Downloads 5780 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study
Authors: Heba Kamal Mohamed
Abstract:
Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.Keywords: tramadol, ovary, withdrawal, rats
Procedia PDF Downloads 29379 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus Aureus of Isolated from Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia
Authors: Haftay Abraha Tadesse
Abstract:
Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and Public Health Significance of Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Socio-demographic data and Public Health Significance were collected using a predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using an ice box to Mekelle University, College of Veterinary Sciences, for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by the disc diffusion method. Data obtained were cleaned and entered into STATA 22.0 and a logistic regression model with odds ratio was calculated to assess the association of risk factors with bacterial contamination. A P-value < 0.05 was considered statistically significant. Results: In the present study, 88 out of 250 (35.2%) were found to be contaminated with Staphylococcus aureus. Among the raw meat specimens, the positivity rate of Staphylococcus aureus was 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risks, factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35 3.35) was found to be statistically significant and have associated with Staphylococcus aureus contamination. All isolates of thirty-seven of Staphylococcus aureus were checked and displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. Whereas the showed resistance to cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aureus isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin, whereas they showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi-drug resistance pattern for Staphylococcus aureus was 90% and 100% of butchery and abattoir houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the development of hand washing behavior and availability of safe water in the butchery houses to reduce the burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics.Keywords: abattoir house, AMR, butchery house, S. aureus
Procedia PDF Downloads 9878 Management of Urine Recovery at the Building Level
Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu
Abstract:
The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings
Procedia PDF Downloads 16677 Temperature-Dependent Post-Mortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Determining Postmortem Interval
Authors: Sachil Kumar, Anoop Kumar Verma, Wahid Ali, Uma Shankar Singh
Abstract:
Globally approximately 55.3 million people die each year. In the India there were 95 lakh annual deaths in 2013. The number of deaths resulted from homicides, suicides and unintentional injuries in the same period was about 5.7 lakh. The ever-increasing crime rate necessitated the development of methods for determining time since death. An erroneous time of death window can lead investigators down the wrong path or possibly focus a case on an innocent suspect. In this regard a research was carried out by analyzing the temperature dependent degradation of a Cardiac Troponin-T protein (cTnT) in the myocardium postmortem as a marker for time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (in the Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow India) after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC), 12 0C, 25 0C and 37 0C for different time periods ((~5, 26, 50, 84, 132, 157, 180, 205, and 230 hours). The cases included were the subjects of road traffic accidents (RTA) without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. The data shows a distinct temporal profile corresponding to the degradation of cTnT by proteases found in cardiac muscle. The disappearance of intact cTnT and the appearance of lower molecular weight bands are easily observed. Western blot data clearly showed the intact protein at 42 kDa, two major (27 kDa, 10kDa) fragments, two additional minor fragments (32 kDa) and formation of low molecular weight fragments as time increases. At 12 0C the intensity of band (intact cTnT) decreased steadily as compared to RT, 25 0C and 37 0C. Overall, both PMI and temperature had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 38 h and at the highest temperature, 37 0C. The combination of high temperature (37 0C) and long Postmortem interval (105.15 hrs) had the most drastic effect on the breakdown of cTnT. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the log of the time postmortem. These plots show a good coefficient of correlation of r = 0.95 (p=0.003) for the regression of the human heart at different temperature conditions. The data presented demonstrates that this technique can provide an extended time range during which Postmortem interval can be more accurately estimated.Keywords: degradation, postmortem interval, proteolysis, temperature, troponin
Procedia PDF Downloads 38676 Eco-Politics of Infrastructure Development in and Around Protected Areas in Kenya: The Case of Nairobi National Park
Authors: Teresa Wanjiru Mbatia
Abstract:
On 7th June 2011, the government Minister of Roads in Kenya announced the proposed construction of a major highway known as a southern bypass to run on the northern border of the Nairobi National Park. The following day on 8th June 2011, the chairperson of the Friends of Nairobi National Park (FONNAP) posted a protest statement on their website, with the heading, ‘Nairobi Park is Not a cake’ alerting its members and conservation groups, with the aim of getting support to the campaign against the government’s intention to hive off a section of the park for road construction. This was the first and earliest statement that led to a series of other events that culminated in conservationists and some other members of the public campaign against the government’s plan to hive off sections of the park to build road and railway infrastructure in or around the park. Together with other non-state actors, mostly non-governmental organisations in conservation/environment and tourism businesses, FoNNAP issued a series of other statements on social, print and electronic media to battle against road and railway construction. This paper examined the strategies, outcomes and interests of actors involved in opposing/proposing the development of transport infrastructure in and around the Nairobi National Park. Specifically, the objectives were to analyse the: (1) Arguments put forward by the eco-warriors to protest infrastructure development; (2) Background and interests of the eco-warriors; (3) Needs/interests and opinions of ordinary common citizens on transport infrastructural development, particularly in and around the urban nature reserve and (4) Final outcomes of the eco-politics surrounding infrastructure development in and around Nairobi National Park. The methodological approach used was environmental history and the social construction of nature. The study collected combined qualitative data using four main approaches, the grounded theory approach, narratives, case studies and a phenomenological approach. The information collected was analysed using critical discourse analysis. The major findings of the study were that under the guise of “public participation,” influential non-state actors have the capacity to perpetuate social-spatial inequalities in the form of curtailing the majority from accessing common public goods. A case in point in this study is how the efforts of powerful conservationists, environmentalists, and tourism businesspersons managed to stall the construction of much-needed road and railway infrastructure severally through litigations in lengthy environmental court processes involving injunctions and stop orders to the government bodies in charge. Moreover, powerful non-state actors were found to have formed informal and sometimes formal coalitions with politicians with selfish interests, which serves to deepen the exclusionary practices and the common good. The study concludes that mostly composed of certain types of elites (NGOs, business communities, politicians and privileged social-cultural groups), non-state actors have used participatory policies to advance their own interests at the expense of the majority whom they claim to represent. These practices are traced to the historically unjust social, political, and economic forces involved in the production of space in Nairobi.Keywords: eco-politics, exclusion, infrastructure, Nairobi national park, non-state actors, protests
Procedia PDF Downloads 17975 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects
Authors: Chandan Kundu, Sankar Bhattacharya
Abstract:
A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasificationKeywords: biomass, pretreatment, pyrolysis, levoglucosenone
Procedia PDF Downloads 14174 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter
Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic
Abstract:
To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow
Procedia PDF Downloads 11873 Health Equity in Hard-to-Reach Rural Communities in Abia State, Nigeria: An Asset-Based Community Development Intervention to Influence Community Norms and Address the Social Determinants of Health in Hard-to-Reach Rural Communities
Authors: Chinasa U. Imo, Queen Chikwendu, Jonathan Ajuma, Mario Banuelos
Abstract:
Background: Sociocultural norms primarily influence the health-seeking behavior of populations in rural communities. In the Nkporo community, Abia State, Nigeria, their sociocultural perception of diseases runs counter to biomedical definitions, wherein they rely heavily on traditional medicine and practices. In a state where birth asphyxia and sepsis account for the significant causes of death for neonates, malaria leads to the causes of other mortalities, followed by common preventable diseases such as diarrhea, pneumonia, acute respiratory tract infection, malnutrition, and HIV/AIDS. Most local mothers attribute their health conditions and that of their children to witchcraft attacks, the hand of God, and ancestral underlining. This influences how they see antenatal and postnatal care, choice of place of accessing care and birth delivery, response to children's illnesses, immunization, and nutrition. Method: To implement a community health improvement program, we adopted an asset-based community development model to address health's normative and social determinants. The first step was to use a qualitative approach to conduct a community health needs baseline assessment, involving focus group discussions with twenty-five (25) youths aged 18-25, semi-structured interviews with ten (10) officers-in-charge of primary health centers, eight (8) ward health committee members, and nine (9) community leaders. Secondly, we designed an intervention program. Going forward, we will proceed with implementing and evaluating this program. Result: The priority needs identified by the communities were malaria, lack of clean drinking water, and the need for behavioral change information. The study also highlighted the significant influence of youths on their peers, family, and community as caregivers and information interpreters. Based on the findings, the NGO SieDi-Hub collaborated with the Abia State Ministry of Health, the State Primary Healthcare Agency, and Empower Next Generations to design a one-year "Community Health Youth Champions Pilot Program." Twenty (20) youths in the community were trained and equipped to champion a participatory approach to bridging the gap between access and delivery of primary healthcare, to adjust sociocultural norms to improve health equity for people in Nkporo community – with limited education, lack of access to health information, and quality healthcare facilities using an innovative community-led improvement approach. Conclusion: Youths play a vital role in achieving health equity, being a vulnerable population with significant influence. To ensure effective primary healthcare, strategies must include cultural humility. The asset-based community development model offers valuable tools, and this article will share ongoing lessons from the intervention's behavioral change strategies with young people.Keywords: asset-based community development, community health, primary health systems strengthening, youth empowerment
Procedia PDF Downloads 9272 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field
Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian
Abstract:
Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering
Procedia PDF Downloads 17771 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance
Authors: Tomofumi Kubota, Mitsuhiro Okayasu
Abstract:
In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property
Procedia PDF Downloads 12570 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service
Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen
Abstract:
In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.Keywords: online-tutor;, student support;, online education, educational practices, distance education
Procedia PDF Downloads 8269 Carbon Footprint Assessment and Application in Urban Planning and Geography
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.Keywords: carbon footprint, case study, geography, urban planning
Procedia PDF Downloads 28868 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 13267 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus aureus of Isolated From Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia
Authors: Haftay Abraha Tadesse
Abstract:
Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in human and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and public health significance for Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Sociodemographic data and public health significance were collected using predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using ice box to Mekelle University, College of Veterinary Sciences for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by disc diffusion method. Data obtained were cleaned and entered in to STATA 22.0 and logistic regression model with odds ratio were calculated to assess the association of risk factors with bacterial contamination. P-value < 0.05 was considered as statistically significant. Results: In present study, 88 out of 250 (35.2%) were found to be contamination with Staphylococcus aureus. Among the raw meat specimens to be positivity rate of Staphylococcus aureus were 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risk factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35-3.35) were found to be statistically significant and ha ve associated with Staphylococcus aureus contamination. All isolates thirty sevevn of Staphyloco ccus aureus were checked displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. whereas the showed resistance of cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aur eu isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin whereas the showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi drug resistance pattern for Staphylococcus aureus were 90% and 100% of butchery and abattoirs houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the developed of hand washing behavior, and availability of safe water in the butchery houses to reduce burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always as a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics. Key words: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia,Keywords: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia, staphylococcus aureuse, MDR
Procedia PDF Downloads 7466 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array
Authors: Alastair Hales, Xi Jiang, Siming Zhang
Abstract:
Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics
Procedia PDF Downloads 18265 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators
Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín
Abstract:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator
Procedia PDF Downloads 20864 A Randomized, Controlled Trial To Test Behavior Change Techniques (BCTS) To Improve Low Intensity Physical Activity In Older Adults
Authors: Ciaran Friel, Jerry Suls, Patrick Robles, Frank Vicari, Joan Duer-Hefele, Karina W. Davidson
Abstract:
Physical activity guidelines focus on increasing moderate intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant response. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit Charge 4 fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7, but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by the Fitbit for two weeks. Participants then engaged with a clinical research coordinator to review comprehension of the text message content and required actions for each of the BCTs to be tested. Participants then selected a consistent daily time in which they would receive their text message prompt. In the 8 week intervention phase of the study, participants received each of the four BCTs, in random order, for a two week period. Text message prompts were delivered daily at a time selected by the participant. All prompts required an interactive response from participants and may have included recording their detailed plan for walking or daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves with peers (self-monitoring, feedback). At the end of each two week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. Analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design, and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, 5 days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of N-of-1 study design to effectively promote physical activity as a component of healthy aging.Keywords: aging, exercise, habit, walking
Procedia PDF Downloads 12963 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach
Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.
Abstract:
Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.Keywords: cowpea, climate-smart, grain sorghum, intercropping
Procedia PDF Downloads 22162 A Spatial Perspective on the Metallized Combustion Aspect of Rockets
Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra
Abstract:
Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations
Procedia PDF Downloads 17861 The Hague Abduction Convention and the Egyptian Position: Strategizing for a Law Reform
Authors: Abdalla Ahmed Abdrabou Emam Eldeib
Abstract:
For more than a century, the Hague Conference has tackled issues in the most challenging areas of private international law, including family law. Its actions in the realm of international child abduction have been remarkable in two ways during the last two decades. First, on October 25, 1980, the Hague Convention on the Civil Aspects of International Child Abduction (the Convention) was promulgated as an unusually inventive and powerful tool. Second, the Convention is rapidly becoming more prominent in the development of international child law. By that time, overseas travel had grown more convenient, and more couples were marrying or travelling across national lines. At the same time, parental separation and divorce have increased, leading to an increase in international child custody battles. The convention they drafted avoids legal quagmires and addresses extra-legal issues well. It literally restores the kid to its place of usual residence by establishing that the youngster was unlawfully abducted from that position or, alternatively, was wrongfully kept abroad after an allowed visit. Legal custody of a child of a contested parent is usually followed by the child's abduction or unlawful relocation to another country by the non-custodial parent or other persons. If a child's custodial parent lives outside of Egypt, the youngster may be kidnapped and brought to Egypt. It's natural to ask what laws should apply and what legal norms should be followed while hearing individual instances. This study comprehensively evaluates and estimates the relevant Hague Child Abduction Convention and the current situation in Egypt and which law is applicable for child custody. In addition, this research emphasis, detail, and focus on the position of Cross-border parental child abductions in Egypt. Moreover, examine the Islamic law compared to the Hague Convention on Child Custody in detail, as well as mentioning the treatment of Islamic countries in this matter in general and Egypt's treatment of this matter in particular, as well as the criticism directed at Egypt regarding the application and implementation of child custody issues. The present research backs up this method by using non-doctrinal techniques, including surveys, interviews, and dialogues. An important objective of this research is to examine the factors that contribute to parental child abduction. In this case, family court attorneys and other interested parties serve as the target audience from whom data is collected. A survey questionnaire was developed and sent to the target population in order to collect data for future empirical testing to validate the identified critical factors on Parental Child Abduction. The main finding in this study is breaking the reservations of many Muslim countries to join the Hague Convention with regard to child custody., Likewise, clarify the problems of implementation in practice in cases of kidnapping a child from one of the parents and traveling with him outside the borders of the country. Finally, this study is to provide suggestions for reforming the current Egyptian Family Law to make it an effective and efficient for all dispute's resolution mechanism and the possibility of joining The Hague Convention.Keywords: egyptian family law, Hague child abduction convention, child custody, cross-border parental child abductions in egypt
Procedia PDF Downloads 7060 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System
Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar
Abstract:
Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel
Procedia PDF Downloads 13559 The Underground Ecosystem of Credit Card Frauds
Authors: Abhinav Singh
Abstract:
Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem
Procedia PDF Downloads 43958 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations
Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim
Abstract:
Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy
Procedia PDF Downloads 8157 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor
Procedia PDF Downloads 32756 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line
Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan
Abstract:
Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA
Procedia PDF Downloads 13555 An Exploration of Special Education Teachers’ Practices in a Preschool Intellectual Disability Centre in Saudi Arabia
Authors: Faris Algahtani
Abstract:
Background: In Saudi Arabia, it is essential to know what practices are employed and considered effective by special education teachers working with preschool children with intellectual disabilities, as a prerequisite for identifying areas for improvement. Preschool provision for these children is expanding through a network of Intellectual Disability Centres while, in primary schools, a policy of inclusion is pursued and, in mainstream preschools, pilots have been aimed at enhancing learning in readiness for primary schooling. This potentially widens the attainment gap between preschool children with and without intellectual disabilities, and influences the scope for improvement. Goal: The aim of the study was to explore special education teachers’ practices and perceived perceptions of those practices for preschool children with intellectual disabilities in Saudi Arabia Method: A qualitative interpretive approach was adopted in order to gain a detailed understanding of how special education teachers in an IDC operate in the classroom. Fifteen semi-structured interviews were conducted with experienced and qualified teachers. Data were analysed using thematic analysis, based on themes identified from the literature review together with new themes emerging from the data. Findings: American methods strongly influenced teaching practices, in particular TEACCH (Treatment and Education of Autistic and Communication related handicapped Children), which emphasises structure, schedules and specific methods of teaching tasks and skills; and ABA (Applied Behaviour Analysis), which aims to improve behaviours and skills by concentrating on detailed breakdown and teaching of task components and rewarding desired behaviours with positive reinforcement. The Islamic concept of education strongly influenced which teaching techniques were used and considered effective, and how they were applied. Tensions were identified between the Islamic approach to disability, which accepts differences between human beings as created by Allah in order for people to learn to help and love each other, and the continuing stigmatisation of disability in many Arabic cultures, which means that parents who bring their children to an IDC often hope and expect that their children will be ‘cured’. Teaching methods were geared to reducing behavioural problems and social deficits rather than to developing the potential of the individual child, with some teachers recognizing the child’s need for greater freedom. Relationships with parents could in many instances be improved. Teachers considered both initial teacher education and professional development to be inadequate for their needs and the needs of the children they teach. This can be partly attributed to the separation of training and development of special education teachers from that of general teachers. Conclusion: Based on the findings, teachers’ practices could be improved by the inclusion of general teaching strategies, parent-teacher relationships and practical teaching experience in both initial teacher education and professional development. Coaching and mentoring support from carefully chosen special education teachers could assist the process, as could the presence of a second teacher or teaching assistant in the classroom.Keywords: special education, intellectual disabilities, early intervention , early childhood
Procedia PDF Downloads 13754 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 16953 Experimental and Modelling Performances of a Sustainable Integrated System of Conditioning for Bee-Pollen
Authors: Andrés Durán, Brian Castellanos, Marta Quicazán, Carlos Zuluaga-Domínguez
Abstract:
Bee-pollen is an apicultural-derived food product, with a growing appreciation among consumers given the remarkable nutritional and functional composition, in particular, protein (24%), dietary fiber (15%), phenols (15 – 20 GAE/g) and carotenoids (600 – 900 µg/g). These properties are given by the geographical and climatic characteristics of the region where it is collected. There are several countries recognized by their pollen production, e.g. China, United States, Japan, Spain, among others. Beekeepers use traps in the entrance of the hive where bee-pollen is collected. After the removal of foreign particles and drying, this product is ready to be marketed. However, in countries located along the equator, the absence of seasons and a constant tropical climate throughout the year favors a more rapid spoilage condition for foods with elevated water activity. The climatic conditions also trigger the proliferation of microorganisms and insects. This, added to the factor that beekeepers usually do not have adequate processing systems for bee-pollen, leads to deficiencies in the quality and safety of the product. In contrast, the Andean region of South America, lying on equator, typically has a high production of bee-pollen of up to 36 kg/year/hive, being four times higher than in countries with marked seasons. This region is also located in altitudes superior to 2500 meters above sea level, having extremes sun ultraviolet radiation all year long. As a mechanism of defense of radiation, plants produce more secondary metabolites acting as antioxidant agents, hence, plant products such as bee-pollen contain remarkable more phenolics and carotenoids than collected in other places. Considering this, the improvement of bee-pollen processing facilities by technical modifications and the implementation of an integrated cleaning and drying system for the product in an apiary in the area was proposed. The beehives were modified through the installation of alternative bee-pollen traps to avoid sources of contamination. The processing facility was modified according to considerations of Good Manufacturing Practices, implementing the combined use of a cabin dryer with temperature control and forced airflow and a greenhouse-type solar drying system. Additionally, for the separation of impurities, a cyclone type system was implemented, complementary to a screening equipment. With these modifications, a decrease in the content of impurities and the microbiological load of bee-pollen was seen from the first stages, principally with a reduction of the presence of molds and yeasts and in the number of foreign animal origin impurities. The use of the greenhouse solar dryer integrated to the cabin dryer allowed the processing of larger quantities of product with shorter waiting times in storage, reaching a moisture content of about 6% and a water activity lower than 0.6, being appropriate for the conservation of bee-pollen. Additionally, the contents of functional or nutritional compounds were not affected, even observing an increase of up to 25% in phenols content and a non-significant decrease in carotenoids content and antioxidant activity.Keywords: beekeeping, drying, food processing, food safety
Procedia PDF Downloads 10452 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level
Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown
Abstract:
‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.Keywords: data integration, data linkage, health planning, health services research
Procedia PDF Downloads 216