Search results for: spatial rainfall prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5084

Search results for: spatial rainfall prediction

3074 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme

Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo

Abstract:

South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.

Keywords: drainage canal, water quality, irrigation, pollutants, environment

Procedia PDF Downloads 335
3073 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 379
3072 Adaptation Mechanism and Planning Response to Resiliency Shrinking of Small Towns Based on Complex Adaptive System by Taking Wuhan as an Example

Authors: Yanqun Li, Hong Geng

Abstract:

The rapid urbanization process taking big cities as the main body leads to the unequal configuration of urban and rural areas in the aspects of land supply, industrial division of labor, service supply and space allocation, and induces the shrinking characterization of service energy, industrial system and population vitality in small towns. As an important spatial unit in the spectrum of urbanization that serves, connects and couples urban and rural areas, the shrinking phenomenon faced by small towns has an important influence on the healthy development of urbanization. Based on the census of small towns in Wuhan metropolitan area, we have found that the shrinking of small towns is a passive contraction of elastic tension under the squeeze in cities. Once affected by the external forces such as policy regulation, planning guidance, and population return, small towns will achieve expansion and growth. Based on the theory of complex adaptive systems, this paper comprehensively constructs the development index evaluation system of small towns from five aspects of population, economy, space, society and ecology, measures the shrinking level of small towns, further analyzes the shrinking characteristics of small towns, and identifies whether the shrinking is elastic or not. And then this paper measures the resilience ability index of small town contract from the above-mentioned five aspects. Finally, this paper proposes an adaptive mechanism of urban-rural interaction evolution under fine division of labor to response the passive shrinking in small towns of Wuhan. Based on the above, the paper creatively puts forward the planning response measures of the small towns on the aspects of spatial layout, function orientation and service support, which can provide reference for other regions.

Keywords: complex adaptive systems, resiliency shrinking, adaptation mechanism, planning response

Procedia PDF Downloads 124
3071 Silviculture for Climate Change: Future Scenarios for Nigeria Forests

Authors: Azeez O. Ganiyu

Abstract:

Climate change is expected to lead to substantial changes in rainfall patterns in southwest Nigeria, and this may have substantial consequence for forest management and for conservation outcomes throughout the region. We examine three different forest types across an environmental spectrum from semi-arid to humid subtropical and consider their response to water shortages and other environmental stresses; we also explore the potential consequence for conservation and timber production by considering impacts on forest structure and limiting stand density. Analysis of a series of scenarios provides the basis for a critique of existing management practices and suggests practical alternatives to develop resilient forests with minimal diminution of production and environmental services. We specifically discuss practical silviculture interventions that are feasible at the landscape-scale, that are economically viable, and that have the potential to enhance resilience of forest stands. We also discuss incentives to encourage adoption of these approaches by private forest owners. We draw on these case studies in southwestern Nigeria to offer generic principle to assist forest researchers and managers faced with similar challenges elsewhere.

Keywords: climate change, forest, future, silviculture, Nigeria

Procedia PDF Downloads 116
3070 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems

Authors: Alexander Norbach

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.

Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver

Procedia PDF Downloads 131
3069 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 581
3068 Understanding the Notion between Resiliency and Recovery through a Spatial-Temporal Analysis of Section 404 Wetland Alteration Permits before and after Hurricane Ike

Authors: Md Y. Reja, Samuel D. Brody, Wesley E. Highfield, Galen D. Newman

Abstract:

Historically, wetlands in the United States have been lost due to agriculture, anthropogenic activities, and rapid urbanization along the coast. Such losses of wetlands have resulted in high flooding risk for coastal communities over the period of time. In addition, alteration of wetlands via the Section 404 Clean Water Act permits can increase the flooding risk to future hurricane events, as the cumulative impact of this program is poorly understood and under-accounted. Further, recovery after hurricane events is acting as an encouragement for new development and reconstruction activities by converting wetlands under the wetland alteration permitting program. This study investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to absorb the impacts of future storm events. Specifically, this work explores how and to what extent wetlands are being affected by the federal permitting program post-Hurricane Ike in 2008. Wetland alteration patterns are examined across three counties (Harris, Galveston, and Chambers County) along the Texas Gulf Coast over a 10-year time period, from 2004-2013 (five years before and after Hurricane Ike) by conducting descriptive spatial analyses. Results indicate that after Hurricane Ike, the number of permits substantially increased in Harris and Chambers County. The vast majority of individual and nationwide type permits were issued within the 100-year floodplain, storm surge zones, and areas damaged by Ike flooding, suggesting that recovery after the hurricane is compromising the ecological resiliency on which coastal communities depend. The authors expect that the findings of this study can increase awareness to policy makers and hazard mitigation planners regarding how to manage wetlands during a long-term recovery process to maintain their natural functions for future flood mitigation.

Keywords: ecological resiliency, Hurricane Ike, recovery, Section 404 Permitting, wetland alteration

Procedia PDF Downloads 251
3067 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 89
3066 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 402
3065 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 130
3064 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: predictive control, synchronization, satellite attitude, control engineering

Procedia PDF Downloads 555
3063 Investigating the Atmospheric Phase Distribution of Inorganic Reactive Nitrogen Species along the Urban Transect of Indo Gangetic Plains

Authors: Reema Tiwari, U. C. Kulshrestha

Abstract:

As a key regulator of atmospheric oxidative capacity and secondary aerosol formations, the signatures of reactive nitrogen (Nr) emissions are becoming increasingly evident in the cascade of air pollution, acidification, and eutrophication of the ecosystem. However, their accurate estimates in N budget remains limited by the photochemical conversion processes where occurrence of differential atmospheric residence time of gaseous (NOₓ, HNO₃, NH₃) and particulate (NO₃⁻, NH₄⁺) Nr species becomes imperative to their spatio temporal evolution on a synoptic scale. The present study attempts to quantify such interactions under tropical conditions when low anticyclonic winds become favorable to the advections from west during winters. For this purpose, a diurnal sampling was conducted using low volume sampler assembly where ambient concentrations of Nr trace gases along with their ionic fractions in the aerosol samples were determined with UV-spectrophotometer and ion chromatography respectively. The results showed a spatial gradient of the gaseous precursors with a much pronounced inter site variability (p < 0.05) than their particulate fractions. Such observations were confirmed for their limited photochemical conversions where less than 1 ratios of day and night measurements (D/N) for the different Nr fractions suggested an influence of boundary layer dynamics at the background site. These phase conversion processes were further corroborated with the molar ratios of NOₓ/NOᵧ and NH₃/NHₓ where incomplete titrations of NOₓ and NH₃ emissions were observed irrespective of their diurnal phases along the sampling transect. Their calculations with equilibrium based approaches for an NH₃-HNO₃-NH₄NO₃ system, on the other hand, were characterized by delays in equilibrium attainment where plots of their below deliquescence Kₘ and Kₚ values with 1000/T confirmed the role of lower temperature ranges in NH₄NO₃ aerosol formation. These results would help us in not only resolving the changing atmospheric inputs of reduced (NH₃, NH₄⁺) and oxidized (NOₓ, HNO₃, NO₃⁻) Nr estimates but also in understanding the dependence of Nr mixing ratios on their local meteorological conditions.

Keywords: diurnal ratios, gas-aerosol interactions, spatial gradient, thermodynamic equilibrium

Procedia PDF Downloads 128
3062 The Impact of Human Intervention on Net Primary Productivity for the South-Central Zone of Chile

Authors: Yannay Casas-Ledon, Cinthya A. Andrade, Camila E. Salazar, Mauricio Aguayo

Abstract:

The sustainable management of available natural resources is a crucial question for policy-makers, economists, and the research community. Among several, land constitutes one of the most critical resources, which is being intensively appropriated by human activities producing ecological stresses and reducing ecosystem services. In this context, net primary production (NPP) has been considered as a feasible proxy indicator for estimating the impacts of human interventions on land-uses intensity. Accordingly, the human appropriation of NPP (HANPP) was calculated for the south-central regions of Chile between 2007 and 2014. The HANPP was defined as the difference between the potential NPP of the naturally produced vegetation (NPP0, i.e., the vegetation that would exist without any human interferences) and the NPP remaining in the field after harvest (NPPeco), expressed in gC/m² yr. Other NPP flows taken into account in HANPP estimation were the harvested (NPPh) and the losses of NPP through land conversion (NPPluc). The ArcGIS 10.4 software was used for assessing the spatial and temporal HANPP changes. The differentiation of HANPP as % of NPP0 was estimated by each landcover type taken in 2007 and 2014 as the reference years. The spatial results depicted a negative impact on land use efficiency during 2007 and 2014, showing negative HANPP changes for the whole region. The harvest and biomass losses through land conversion components are the leading causes of loss of land-use efficiency. Furthermore, the study depicted higher HANPP in 2014 than in 2007, representing 50% of NPP0 for all landcover classes concerning 2007. This performance was mainly related to the higher volume of harvested biomass for agriculture. In consequence, the cropland depicted the high HANPP followed by plantation. This performance highlights the strong positive correlation between the economic activities developed into the region. This finding constitutes the base for a better understanding of the main driving force influencing biomass productivity and a powerful metric for supporting the sustainable management of land use.

Keywords: human appropriation, land-use changes, land-use impact, net primary productivity

Procedia PDF Downloads 137
3061 Psychometric Examination of Atma Jaya's Multiple Intelligence Batteries for University Students

Authors: Angela Oktavia Suryani, Bernadeth Gloria, Edwin Sutamto, Jessica Kristianty, Ni Made Rai Sapitri, Patricia Catherine Agla, Sitti Arlinda Rochiadi

Abstract:

It was found that some blogs or personal websites in Indonesia sell standardized intelligence tests (for example, Progressive Matrices (PM), Intelligence Structure Test (IST), and Culture Fair Intelligence Test (CFIT)) and other psychological tests, together with the manual and the key answers for public. Individuals can buy and prepare themselves for selection or recruitment with the real test. This action drives people to lie to the institution (education or company) and also to themselves. It was also found that those tests are old. Some items are not relevant with the current context, for example a question about a diameter of a certain coin that does not exist anymore. These problems motivate us to develop a new intelligence battery test, namely of Multiple Aptitude Battery (MAB). The battery test was built by using Thurstone’s Primary Mental Abilities theory and intended to be used by high schools students, university students, and worker applicants. The battery tests consist of 9 subtests. In the current study we examine six subtests, namely Reading Comprehension, Verbal Analogies, Numerical Inductive Reasoning, Numerical Deductive Reasoning, Mechanical Ability, and Two Dimensional Spatial Reasoning for university students. The study included 1424 data from students recruited by convenience sampling from eight faculties at Atma Jaya Catholic University of Indonesia. Classical and modern test approaches (Item Response Theory) were carried out to identify the item difficulties of the items and confirmatory factor analysis was applied to examine their internal validities. The validity of each subtest was inspected by using convergent–discriminant method, whereas the reliability was examined by implementing Kuder–Richardson formula. The result showed that the majority of the subtests were difficult in medium level, and there was only one subtest categorized as easy, namely Verbal Analogies. The items were found homogenous and valid measuring their constructs; however at the level of subtests, the construct validity examined by convergent-discriminant method indicated that the subtests were not unidimensional. It means they were not only measuring their own constructs but also other construct. Three of the subtests were able to predict academic performance with small effect size, namely Reading Comprehension, Numerical Inductive Reasoning, and Two Dimensional Spatial Reasoning. GPAs in intermediate level (GPAs at third semester and above) were considered as a factor for predictive invalidity. The Kuder-Richardson formula showed that the reliability coefficients for both numerical reasoning subtests and spatial reasoning were superior, in the range 0.84 – 0.87, whereas the reliability coefficient for the other three subtests were relatively below standard for ability test, in the range of 0.65 – 0.71. It can be concluded that some of the subtests are ready to be used, whereas some others are still need some revisions. This study also demonstrated that the convergent-discrimination method is useful to identify the general intelligence of human.

Keywords: intelligence, psychometric examination, multiple aptitude battery, university students

Procedia PDF Downloads 436
3060 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 452
3059 Effects of Partial Sleep Deprivation on Prefrontal Cognitive Functions in Adolescents

Authors: Nurcihan Kiris

Abstract:

Restricted sleep is common in young adults and adolescents. The results of a few objective studies of sleep deprivation on cognitive performance were not clarified. In particular, the effect of sleep deprivation on the cognitive functions associated with frontal lobe such as attention, executive functions, working memory is not well known. The aim of this study is to investigate the effect of partial sleep deprivation experimentally in adolescents on the cognitive tasks of frontal lobe including working memory, strategic thinking, simple attention, continuous attention, executive functions, and cognitive flexibility. Subjects of the study were recruited from voluntary students of Cukurova University. Eighteen adolescents underwent four consecutive nights of monitored sleep restriction (6–6.5 hr/night) and four nights of sleep extension (10–10.5 hr/night), in counterbalanced order, and separated by a washout period. Following each sleep period, cognitive performance was assessed, at a fixed morning time, using a computerized neuropsychological battery based on frontal lobe functions task, a timed test providing both accuracy and reaction time outcome measures. Only the spatial working memory performance of cognitive tasks was found to be statistically lower in a restricted sleep condition than the extended sleep condition. On the other hand, there was no significant difference in the performance of cognitive tasks evaluating simple attention, constant attention, executive functions, and cognitive flexibility. It is thought that especially the spatial working memory and strategic thinking skills of adolescents may be susceptible to sleep deprivation. On the other hand, adolescents are predicted to be optimally successful in ideal sleep conditions, especially in the circumstances requiring for the short term storage of visual information, processing of stored information, and strategic thinking. The findings of this study may also be associated with possible negative functional effects on the processing of academic social and emotional inputs in adolescents for partial sleep deprivation. Acknowledgment: This research was supported by Cukurova University Scientific Research Projects Unit.

Keywords: attention, cognitive functions, sleep deprivation, working memory

Procedia PDF Downloads 156
3058 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains

Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy

Abstract:

Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.

Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover

Procedia PDF Downloads 215
3057 Assessment of Spectral Indices for Soil Salinity Estimation in Irrigated Land

Authors: R. Lhissou , A. El Harti , K. Chokmani, E. Bachaoui, A. El Ghmari

Abstract:

Soil salinity is a serious environmental hazard in many countries around the world especially the arid and semi-arid countries like Morocco. Salinization causes negative effects on the ground; it affects agricultural production, infrastructure, water resources and biodiversity. Remote sensing can provide soil salinity information for large areas, and in a relatively short time. In addition, remote sensing is not limited by extremes in terrain or hazardous condition. Contrariwise, experimental methods for monitoring soil salinity by direct measurements in situ are very demanding of time and resources, and also very limited in spatial coverage. In the irrigated perimeter of Tadla plain in central Morocco, the increased use of saline groundwater and surface water, coupled with agricultural intensification leads to the deterioration of soil quality especially by salinization. In this study, we assessed several spectral indices of soil salinity cited in the literature using Landsat TM satellite images and field measurements of electrical conductivity (EC). Three Landsat TM satellite images were taken during 3 months in the dry season (September, October and November 2011). Based on field measurement data of EC collected in three field campaigns over the three dates simultaneously with acquisition dates of Landsat TM satellite images, a two assessment techniques are used to validate a soil salinity spectral indices. Firstly, the spectral indices are validated locally by pixel. The second validation technique is made using a window of size 3x3 pixels. The results of the study indicated that the second technique provides getting a more accurate validation and the assessment has shown its limits when it comes to assess across the pixel. In addition, the EC values measured from field have a good correlation with some spectral indices derived from Landsat TM data and the best results show an r² of 0.88, 0.79 and 0.65 for Salinity Index (SI) in the three dates respectively. The results have shown the usefulness of spectral indices as an auxiliary variable in the spatial estimation and mapping salinity in irrigated land.

Keywords: remote sensing, spectral indices, soil salinity, irrigated land

Procedia PDF Downloads 391
3056 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 467
3055 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 235
3054 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies

Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan

Abstract:

The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.

Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping

Procedia PDF Downloads 98
3053 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 161
3052 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method

Authors: Defne Uz

Abstract:

Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.

Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration

Procedia PDF Downloads 145
3051 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 392
3050 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
3049 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
3048 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change

Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon

Abstract:

Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.

Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands

Procedia PDF Downloads 208
3047 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand

Authors: C. Bejrananda, Y. Lee, T. Khamkaew

Abstract:

With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.

Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport

Procedia PDF Downloads 274
3046 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
3045 Behavior Adoption on Marine Habitat Conservation in Indonesia

Authors: Muhammad Yayat Afianto, Darmawan, Agung Putra Utama, Hari Kushardanto

Abstract:

Fish Forever, Rare’s innovative coastal fisheries program, combined community-based conservation management approach with spatial management to restore and protect Indonesia’s small-scale fisheries by establishing Fishing Managed Access Area. A ‘TURF-Reserve’ is a fishery management approach that positions fishers at the center of fisheries management, empowering them to take care of and make decisions about the future of their fishery. After two years of the program, social marketing campaigns succeeded in changing their behavior by adopting the new conservation behavior. The Pride-TURF-R campaigns developed an overarching hypothesis of impact that captured the knowledge, attitude and behavior changes needed to reduce threats and achieve conservation results. Rare help Batu Belah fishers to develop their group, developed with their roles, sustainable fisheries plan, and the budget plan. On 12th February 2017, the Head of Loka Kawasan Konservasi Perairan Nasional (LKKPN) which is a Technical Implementation Unit for National Marine Conservation Areas directly responsible to the Directorate General for Marine Spatial Management in the Ministry of Marine Affairs and Fisheries had signed a Partnership Agreement with the Head of Batu Belah Village to manage a TURF+Reserve area as wide as 909 hectares. The fishers group have been collecting the catch and submitting the report monthly, initiated the installation of the buoy markers for the No Take Zone, and formed the Pokmaswas (community-based surveillance group). Prior to this behavior adoption, they don’t have any fisheries data, no group of fishers, and they have still fishing inside the No Take Zone. This is really a new behavior adoption for them. This paper will show the process and success story of the social marketing campaign to conserve marine habitat in Anambas through Pride-TURF-R program.

Keywords: behavior adoption, community participation, no take zone, pride-TURF-R

Procedia PDF Downloads 271