Search results for: machine learning tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16903

Search results for: machine learning tools and techniques

14893 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation

Authors: Lufungula Osembe

Abstract:

The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.

Keywords: digital innovation, DSR, education, opportunities, research

Procedia PDF Downloads 69
14892 Fostering Students’ Active Learning in Speaking Class through Project-Based Learning

Authors: Rukminingsih Rukmi

Abstract:

This paper addresses the issue of L2 teaching speaking to ESL students by fostering their active learning through project-based learning. Project-based learning was employed in classrooms where teachers support students by giving sufficient guidance and feedback. The students drive the inquiry, engage in research and discovery, and collaborate effectively with teammates to deliver the final work product. The teacher provides the initial direction and acts as a facilitator along the way. This learning approach is considered helpful for fostering students’ active learning. that the steps in implementing of project-based learning that fosters students’ critical thinking in TEFL class are in the following: (1) Discussing the materials about Speaking Class, (2) Working with the group to construct scenario of ways on speaking practice, (3) Practicing the scenario, (4) Recording the speaking practice into video, and (5) Evaluating the video product. This research is aimed to develop a strategy of teaching speaking by implementing project-based learning to improve speaking skill in the second Semester of English Department of STKIP PGRI Jombang. To achieve the purpose, the researcher conducted action research. The data of the study were gathered through the following instruments: test, observation checklists, and questionnaires. The result was indicated by the increase of students’ average speaking scores from 65 in the preliminary study, 73 in the first cycle, and 82 in the second cycle. Besides, the results of the study showed that project-based learning considered to be appropriate strategy to give students the same amount of chance in practicing their speaking skill and to pay attention in creating a learning situation.

Keywords: active learning, project-based learning, speaking ability, L2 teaching speaking

Procedia PDF Downloads 398
14891 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors

Authors: Huda Al Shuaily, Karen Renaud

Abstract:

Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.

Keywords: pattern, SQL, learning, model

Procedia PDF Downloads 254
14890 Applying Personel Resilence and Emotional Agitation in Occupational, Health and Safety Education and Training

Authors: M. Jayandran

Abstract:

Continual professional development is an important concept for safety professionals to strengthen the knowledge base and to achieve the required qualifications or international memberships in a given time. But the main problems which have observed among most of the safety aspirants are as follows: lack of focus, inferiority complex, superiority complex, lack of interest and lethargy, family and off job stress, health issues, usage of drugs and alcohol, and absenteeism. A HSE trainer should be an expert in soft skills and other stress, emotional handling techniques, so as to manage the above aspirants during training. To do this practice, a trainer has to brainstorm himself of few of the soft skills like personnel resilience, mnemonic techniques, mind healing, and subconscious suggestion techniques by integrating with an emotional intelligence quotient of the aspirants. By adopting these techniques, a trainer can successfully deliver the course and influence the different types of audience to achieve success in training.

Keywords: personnel resilience, mnemonic techniques, mind healing, sub conscious suggestion techniques

Procedia PDF Downloads 307
14889 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 137
14888 Problems of Learning English Vowels Pronunciation in Nigeria

Authors: Wasila Lawan Gadanya

Abstract:

This paper examines the problems of learning English vowel pronunciation. The objective is to identify some of the factors that affect the learning of English vowel sounds and their proper realization in words. The theoretical framework adopted is based on both error analysis and contrastive analysis. The data collection instruments used in the study are questionnaire and word list for the respondents (students) and observation of some of their lecturers. All the data collected were analyzed using simple percentage. The findings show that it is not a single factor that affects the learning of English vowel pronunciation rather many factors concurrently do so. Among the factors examined, it has been found that lack of correlation between English orthography and its pronunciation, not mother-tongue (which most people consider as a factor affecting learning of the pronunciation of a second language), has the greatest influence on students’ learning and realization of English vowel sounds since the respondents in this study are from different ethnic groups of Nigeria and thus speak different languages but having the same or almost the same problem when pronouncing the English vowel sounds.

Keywords: English vowels, learning, Nigeria, pronunciation

Procedia PDF Downloads 451
14887 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram

Abstract:

The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.

Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems

Procedia PDF Downloads 356
14886 An Intelligent Tutoring System Enriched with 3D Virtual Reality for Dentistry Students

Authors: Meltem Eryılmaz

Abstract:

With the emergence of the COVID-19 infection outbreak, the socio-cultural, political, economic, educational systems dynamics of the world have gone through a major change, especially in the educational field, specifically dentistry preclinical education, where the students must have a certain amount of real-time experience in endodontics and other various procedures. The totality of the digital and physical elements that make our five sense organs feel as if we really exist in a virtual world is called virtual reality. Virtual reality, which is very popular today, has started to be used in education. With the inclusion of developing technology in education and training environments, virtual learning platforms have been designed to enrich students' learning experiences. The field of health is also affected by these current developments, and the number of virtual reality applications developed for students studying dentistry is increasing day by day. The most widely used tools of this technology are virtual reality glasses. With virtual reality glasses, you can look any way you want in a world designed in 3D and navigate as you wish. With this project, solutions that will respond to different types of dental practices of students who study dentistry with virtual reality applications are produced. With this application, students who cannot find the opportunity to work with patients in distance education or who want to improve themselves at home have unlimited trial opportunities. Unity 2021, Visual Studio 2019, Cardboard SDK are used in the study.

Keywords: dentistry, intelligent tutoring system, virtual reality, online learning, COVID-19

Procedia PDF Downloads 203
14885 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 306
14884 A Global Organizational Theory for the 21st Century

Authors: Troy A. Tyre

Abstract:

Organizational behavior and organizational change are elements of the ever-changing global business environment. Leadership and organizational behavior are 21st century disciplines. Network marketing organizations need to understand the ever-changing nature of global business and be ready and willing to adapt to the environment. Network marketing organizations have a challenge keeping up with a rapid escalation in global growth. Network marketing growth has been steady and global. Network marketing organizations have been slow to develop a 21st century global strategy to manage the rapid escalation of growth degrading organizational behavior, job satisfaction, increasing attrition, and degrading customer service. Development of an organizational behavior and leadership theory for the 21st century to help network marketing develops a global business strategy to manage the rapid escalation in growth that affects organizational behavior. Managing growth means organizational leadership must develop and adapt to the organizational environment. Growth comes with an open mind and one’s departure from the comfort zone. Leadership growth operates in the tacit dimension. Systems thinking and adaptation of mental models can help shift organizational behavior. Shifting the organizational behavior requires organizational learning. Organizational learning occurs through single-loop, double-loop, and triple-loop learning. Triple-loop learning is the most difficult, but the most rewarding. Tools such as theory U can aid in developing a landscape for organizational behavioral development. Additionally, awareness to espoused and portrayed actions is imperatives. Theories of motivation, cross-cultural diversity, and communications are instrumental in founding an organizational behavior suited for the 21st century.

Keywords: global, leadership, network marketing, organizational behavior

Procedia PDF Downloads 553
14883 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach

Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal

Abstract:

Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.

Keywords: e-learning, cluster, personalization, sequence, pattern

Procedia PDF Downloads 428
14882 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 557
14881 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 59
14880 Cultural Understanding in Chinese Language Education for Foreigners: A Quest for Better Integration

Authors: Linhan Sun

Abstract:

With the gradual strengthening of China's economic development, more and more people around the world are learning Chinese due to economic and trade needs, which has also promoted the research related to Chinese language education for foreigners. Because the Chinese language system is different from the Western language system, learning Chinese is not easy for many learners. In addition, language learning cannot be separated from the learning and understanding of culture. How to integrate cultural learning into the curriculum of Chinese language education for foreigners is the focus of this study. Through a semi-structured in-depth interview method, 15 foreigners who have studied or are studying Chinese participated in this study. This study found that cultural learning and Chinese as a foreign language are relatively disconnected. In other words, learners were able to acquire a certain degree of knowledge of the Chinese language through textbooks or courses but did not gain a deeper understanding of Chinese culture.

Keywords: Chinese language education, Chinese culture, qualitative methods, intercultural communication

Procedia PDF Downloads 171
14879 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)

Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.

Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)

Procedia PDF Downloads 227
14878 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 28
14877 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 60
14876 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification

Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli

Abstract:

Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.

Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics

Procedia PDF Downloads 71
14875 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
14874 Customization of Moodle Open Source LMS for Tanzania Secondary Schools’ Use

Authors: Ellen A. Kalinga

Abstract:

Moodle is an open source learning management system that enables creation of a powerful and flexible learning environment. Many organizations, especially learning institutions have customized Moodle open source LMS for their own use. In general open source LMSs are of great interest due to many advantages they offer in terms of cost, usage and freedom to customize to fit a particular context. Tanzania Secondary School e-Learning (TanSSe-L) system is the learning management system for Tanzania secondary schools. TanSSe-L system was developed using a number of methods, one of them being customization of Moodle Open Source LMS. This paper presents few areas on the way Moodle OS LMS was customized to produce a functional TanSSe-L system fitted to the requirements and specifications of Tanzania secondary schools’ context.

Keywords: LMS, Moodle, e-learning, Tanzania, secondary school

Procedia PDF Downloads 393
14873 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 115
14872 'English in Tourism' in the Project 'English for Community'

Authors: Nguyen Duc An

Abstract:

To the movement towards learning community, creating friendly, positive and appropriate learning environments which best suit the local features is the most salient and decisive factor of the development and success of that learning society. With the aim at building such an English language learning community for the inhabitants in Moc Chau - the national tourist zone, Tay Bac University has successfully designed and deployed the program ‘English in Tourism’ in the project ‘English for Community’. With the strong attachment to the local reality and close knit to the certain communicative situations, this program which was carefully designed and compiled with interesting and practical activities, has greatly helped the locals confidently introduce and popularize the natural beauty, unique culture and specific characteristics of Moc Chau to the foreign tourists; in addition, reinforce awareness of the native culture of the local people as well as improve the professional development in tourism and service.

Keywords: English for community, learning society, learning community, English in tourism

Procedia PDF Downloads 368
14871 Beyond the Flipped Classroom: A Tool to Promote Autonomy, Cooperation, Differentiation and the Pleasure of Learning

Authors: Gabriel Michel

Abstract:

The aim of our research is to find solutions for adapting university teaching to today's students and companies. To achieve this, we have tried to change the posture and behavior of those involved in the learning situation by promoting other skills. There is a gap between the expectations and functioning of students and university teaching. At the same time, the business world needs employees who are obviously competent and proficient in technology, but who are also imaginative, flexible, able to communicate, learn on their own and work in groups. These skills are rarely developed as a goal at university. The flipped classroom has been one solution. Thanks to digital tools such as Moodle, for example, but the model behind them is still centered on teachers and classic learning scenarios: it makes course materials available without really involving them and encouraging them to cooperate. It's against this backdrop that we've conducted action research to explore the possibility of changing the way we learn (rather than teach) by changing the posture of both the classic student and the teacher. We hypothesized that a tool we developed would encourage autonomy, the possibility of progressing at one's own pace, collaboration and learning using all available resources(other students, course materials, those on the web and the teacher/facilitator). Experimentation with this tool was carried out with around thirty German and French first-year students at the Université de Lorraine in Metz (France). The projected changesin the groups' learning situations were as follows: - use the flipped classroom approach but with a few traditional presentations by the teacher (materials having been put on a server) and lots of collective case solving, - engage students in their learning by inviting them to set themselves a primary objective from the outset, e.g. “Assimilating 90% of the course”, and secondary objectives (like a to-do list) such as “create a new case study for Tuesday”, - encourage students to take control of their learning (knowing at all times where they stand and how far they still have to go), - develop cooperation: the tool should encourage group work, the search for common solutions and the exchange of the best solutions with other groups. Those who have advanced much faster than the others, or who already have expertise in a subject, can become tutors for the others. A student can also present a case study he or she has developed, for example, or share materials found on the web or produced by the group, as well as evaluating the productions of others, - etc… A questionnaire and analysis of assessment results showed that the test group made considerable progress compared with a similar control group. These results confirmed our hypotheses. Obviously, this tool is only effective if the organization of teaching is adapted and if teachers are willing to change the way they work.

Keywords: pedagogy, cooperation, university, learning environment

Procedia PDF Downloads 22
14870 A Study on Pre-Service English Language Teacher's Language Self-Efficacy and Goal Orientation

Authors: Ertekin Kotbas

Abstract:

Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English Language Teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English Language Self-Efficacy and Teachers’ Learning Goal Orientation which has a positive impact on learning teachings skills are scarce. Examination of these English Language self-efficacy beliefs and Learning Goal Orientations of Pre-Service EFL Teachers may broaden the horizons, in consideration the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, the present study aims to investigate the relationship between English Language Self-Efficacy and Teachers’ Learning Goal Orientation from Turkish context.

Keywords: English language, learning goal orientation, self-efficacy, pre-service teachers

Procedia PDF Downloads 492
14869 Revisiting High School Students’ Learning Styles in English Subject

Authors: Aroona Hashmi

Abstract:

The prime motive for this endeavor was to explore the tenth grade English class students’ preferred learning styles studying in government secondary school so that English subject teachers could tailor their pedagogical strategies in relation to their students learning needs. The further aim of this study was to identify any significance difference among the students on a gender basis, area basis and different categories of school basis. The population of this study consisting of all the secondary level schools working in the government sector and positioned in the province of Punjab. The multi-stage cluster sampling method was employed while selecting the study sample from the population. The scale used for the identification of students’ learning styles in this study was developed by Grasha-Riechmann. The data collected through learning style scale was analyzed by employing descriptive statistics technique. The results from data analysis depict that learning styles of the majority of students found to be Collaborative and Competitive. Overall, no considerable difference was surfaced between male-female, urban-rural, general-other categories of 10th grade English class students learning styles.

Keywords: learning style, learning style scale, grade, government sector

Procedia PDF Downloads 341
14868 Practical Model of Regenerative Braking Using DC Machine and Boost Converter

Authors: Shah Krupa Rajendra, Amit Kumar

Abstract:

Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.

Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking

Procedia PDF Downloads 272
14867 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 219
14866 Reducing Lean by Implementing Distance Learning in the Training Programs of Oil and Gas Industries

Authors: Sayed-Mahdi Hashemi-Dehkordi, Ian Baker

Abstract:

This paper investigates the benefits of implementing distance learning in training courses for the oil and gas industries to reduce lean. Due to the remote locations of many oil and gas operations, scheduling and organizing in-person training classes for employees in these sectors is challenging. Furthermore, considering that employees often work in periodic shifts such as day, night, and resting periods, arranging in-class training courses requires significant time and transportation. To explore the effectiveness of distance learning compared to in-class learning, a set of questionnaires was administered to employees of a far on-shore refinery unit in Iran, where both in-class and distance classes were conducted. The survey results revealed that over 72% of the participants agreed that distance learning saved them a significant amount of time by rating it 4 to 5 points out of 5 on a Likert scale. Additionally, nearly 67% of the participants acknowledged that distance learning considerably reduced transportation requirements, while approximately 64% agreed that it helped in resolving scheduling issues. Introducing and encouraging the use of distance learning in the training environments of oil and gas industries can lead to notable time and transportation savings for employees, ultimately reducing lean in a positive manner.

Keywords: distance learning, in-class learning, lean, oil and gas, scheduling, time, training programs, transportation

Procedia PDF Downloads 68
14865 Social Skills for Students with and without Learning Disabilities in Primary Education in Saudi Arabia

Authors: Omer Agail

Abstract:

The purpose of this study was to assess the social skills of students with and without learning disabilities in primary education in Saudi Arabia. A Social Skills Rating Scale for Teachers Form (SSRS-TF) was used to evaluate students' social skills as perceived by teachers. A randomly-selected sample was chosen from students with and without learning disabilities. Descriptive statistics were used to describe the demographic characteristics of participants. Analysis indicated that there were statistically significant differences in SSRS-TF by academic status, i.e. students with learning disabilities exhibit less social skills compared to students without learning disabilities. In addition, analysis indicated that there were no statistically significant differences in SSRS-TF by gender. A conclusion and recommendations are presented.

Keywords: primary education, students with learning disabilities, social skills, social competence

Procedia PDF Downloads 391
14864 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 226