Search results for: two-unit series systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11782

Search results for: two-unit series systems

9802 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System

Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio

Abstract:

A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.

Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel

Procedia PDF Downloads 675
9801 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 158
9800 The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control

Authors: Sheren H. Salah, Ahmed Y. Ben Sasi

Abstract:

The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.

Keywords: inverted pendulum (IP), proportional-integral derivative (PID), sliding mode control (SMC), systems and control engineering

Procedia PDF Downloads 591
9799 Development of Interaction Factors Charts for Piled Raft Foundation

Authors: Abdelazim Makki Ibrahim, Esamaldeen Ali

Abstract:

This study aims at analysing the load settlement behavior and predict the bearing capacity of piled raft foundation a series of finite element models with different foundation configurations and stiffness were established. Numerical modeling is used to study the behavior of the piled raft foundation due to the complexity of piles, raft, and soil interaction and also due to the lack of reliable analytical method that can predict the behavior of the piled raft foundation system. Simple analytical models are developed to predict the average settlement and the load sharing between the piles and the raft in piled raft foundation system. A simple example to demonstrate the applications of these charts is included.

Keywords: finite element, pile-raft foundation, method, PLAXIS software, settlement

Procedia PDF Downloads 561
9798 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation

Authors: Othman Maklouf, Abdunnaser Tresh

Abstract:

Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.

Keywords: GPS, IMU, Kalman filter, materials engineering

Procedia PDF Downloads 425
9797 Design of Dendritic Molecules Bearing Donor-Acceptor Groups (Pyrene-Bodipy): Optical and Photophysical Properties

Authors: Pasquale Porcu, Mireille Vonlanthen, Gerardo Zaragoza-Galán, Ernesto Rivera

Abstract:

In this work, we report the synthesis of a novel series of dendritic molecules bearing donor-acceptor groups (pyrene-bodipy) with potential applications in energy transfer. Initially, first and second generation Fréchet type dendrons (Py2-G1OH and Py4-G2OH) were prepared from 1-pyrenylbutanol and 3,5-dihydroxybenzylic alcohol. These compounds were further linked to a bodipy unit via an esterification reaction in order to obtain the desired products (Bodipy-G1Py2) and Bodipy-G2Py4). These compounds were fully characterized by FTIR and 1H and 13C NMR spectroscopy and their molecular weights were determined by MALDITOF. The optical and photophysical properties of these molecules were evaluated by absorbance and fluorescence spectroscopy, in order to compare their behaviour with other analogue molecules.

Keywords: bodipy, dendritic molecules, optical properties, pyrene

Procedia PDF Downloads 288
9796 Identification of Synthetic Hybrids of 4-Thiazolidinone-Bromopyrrole Alkaloid as HIV-1 RT Inhibitors

Authors: Rajesh A. Rane, Shital S. Naphade, Rajshekhar Karpoormath

Abstract:

Thiozolidin-4-one, a mimic of thiazolobenzimidazole (TBZ) has drawn many attentions due to its potent and selective inhibition against the HIV-1 and low toxicity by binding to the allosteric site of the reverse transcriptase (RT) as a non-nucleoside RT inhibitor (NNRTI). Similarly, marine bromopyrrole alkaloids are well known for their diverse array of anti-infective properties. Hence, we have reported synthesis and in vitro HIV-1 RT inhibitory activity of a series of 4-thiazolidinone-bromopyrrole alkaloid hybrids tethered with amide linker. The results of in vitro HIV-1 RT kit assay showed that some of the compounds, such as 4c, 4d, and 4i could effectively inhibit RT activity. Among them, compounds 4c having 4-chlorophenyl substituted 4-thiazolidione ring was the best one with the IC50 value of 0.26 µM. The sturdy emerges with key structure-activity relationship that pyrrole-NH-free core benefited inhibition against HIV-1 RT inhibition. This study identified conjugate 4c with potent activity and selectivity as promising compound for further drug development to HIV.

Keywords: antiviral drugs, bromopyrrole alkaloids, HIV-1 RT inhibition, 4-thiazolidinone

Procedia PDF Downloads 463
9795 Non-factoid Arabic Question-Answering Systems: A Review of Existing Studies, Research Issues, and Future Trends

Authors: Aya Mousa, Mahmoud Alsaheb

Abstract:

Question Answering System (QAS) aims to provide the most suitable answer to the user's question in any natural language. In the recent future, it will be a future version of web search. Much research has already been done on answering Arabic factoid questions and achieved good accuracy. In contrast, the progress in research on Arabic non-factoid question answering is still immature. In this survey, we summarize, discuss, and compare the existing Arab non-factoid question-answering systems to identify the limitations and the achievements that were accomplished. Furthermore, we investigate the challenges in developing non-factoid Arabic QAS and the possible future improvements. The survey is written to help the researchers to understand the field of Arabic non-factoid QAS and to motivate them to utilize different approaches to develop and enhance the Non-factoid Arabic QAS

Keywords: Arabic question answering system, non-factoid question answering, Arabic NLP, question answering

Procedia PDF Downloads 106
9794 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 579
9793 Fuzzy Based Stabilizer Control System for Quad-Rotor

Authors: B. G. Sampath, K. C. R. Perera, W. A. S. I. Wijesuriya, V. P. C. Dassanayake

Abstract:

In this paper the design, development and testing of a stabilizer control system for a Quad-rotor is presented which is focused on the maneuverability. The mechanical design is performed along with the design of the controlling algorithm which is devised using fuzzy logic controller. The inputs for the system are the angular positions and angular rates of the Quad-Rotor relative to three axes. Then the output data is filtered from an accelerometer and a gyroscope through a Kalman filter. In the development of the stability controlling system Mandani Fuzzy Model is incorporated. The results prove that the fuzzy based stabilizer control system is superior in high dynamic disturbances compared to the traditional systems which use PID integrated stabilizer control systems.

Keywords: fuzzy stabilizer, maneuverability, PID, quad-rotor

Procedia PDF Downloads 328
9792 Problems of the Management of Legal Entities of Private Law in Georgia

Authors: Ketevan Kokrashvili, Rusudan Kutateladze, Nino Pailodze

Abstract:

Importance of management of legal entities under private law of which especially corporate management, as well as looking for ways of its improvement and perfection has become especially relevant in the twenty-first century, which was greatly contributed to by the global economic crisis. Some states have adopted Corporate Governance Codes; the European Union has set to work on a series of directives the main purpose of which is an improvement of corporate governance, provision of greater transparency and implementation of an effective control mechanism. This process is not yet completed, and various problematic issues associated with management of legal persons are still being debated among practitioner experts and scholars. Georgia is not an exception in this regard. The article discusses the legislative gaps, and in some cases, discrepancies having arisen in legal relationships under private law and having caused many practical problems. This especially applies to the management of capital companies.

Keywords: business entities, corporate management, capital public management, existing problems, legal discrepancies

Procedia PDF Downloads 289
9791 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry

Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia

Abstract:

Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.

Keywords: barriers, critical success factors, external factors, internal factors, quality management systems

Procedia PDF Downloads 190
9790 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability

Procedia PDF Downloads 137
9789 Developing a Sustainable System to Deliver Early Intervention for Emotional Health through Australian Schools

Authors: Rebecca-Lee Kuhnert, Ron Rapee

Abstract:

Up to 15% of Australian youth will experience an emotional disorder, yet relatively few get the help they need. Schools provide an ideal environment through which we can identify young people who are struggling and provide them with appropriate help. Universal mental health screening is a method by which all young people in school can be quickly assessed for emotional disorders, after which identified youth can be linked to appropriate health services. Despite the obvious logic of this process, universal mental health screening has received little scientific evaluation and even less application in Australian schools. This study will develop methods for Australian education systems to help identify young people (aged 9-17 years old) who are struggling with existing and emerging emotional disorders. Prior to testing, a series of focus groups will be run to get feedback and input from young people, parents, teachers, and mental health professionals. They will be asked about their thoughts on school-based screening methods and and how to best help students at risk of emotional distress. Schools (n=91) across New South Wales, Australia will be randomised to do either immediate screening (in May 2021) or delayed screening (in February 2022). Students in immediate screening schools will complete a long online mental health screener consisting of standard emotional health questionnaires. Ultimately, this large set of items will be reduced to a small number of items to form the final brief screener. Students who score in the “at-risk” range on any measure of emotional health problems will be identified to schools and offered pathways to relevant help according to the most accepted and approved processes identified by the focus groups. Nine months later, the same process will occur among delayed screening schools. At this same time, students in the immediate screening schools will complete screening for a second time. This will allow a direct comparison of the emotional health and help-seeking between youth whose schools had engaged in the screening and pathways to care process (immediate) and those whose schools had not engaged in the process (delayed). It is hypothesised that there will be a significant increase in students who receive help from mental health support services after screening, compared with baseline. It is also predicted that all students will show significantly less emotional distress after screening and access to pathways of care. This study will be an important contribution to Australian youth mental health prevention and early intervention by determining whether school screening leads to a greater number of young people with emotional disorders getting the help that they need and improving their mental health outcomes.

Keywords: children and young people, early intervention, mental health, mental health screening, prevention, school-based mental health

Procedia PDF Downloads 99
9788 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 569
9787 Analysis of Influence of Geometrical Set of Nozzles on Aerodynamic Drag Level of a Hero’s Based Steam Turbine

Authors: Mateusz Paszko, Miroslaw Wendeker, Adam Majczak

Abstract:

High temperature waste energy offers a number of management options. The most common energy recuperation systems, that are actually used to utilize energy from the high temperature sources are steam turbines working in a high pressure and temperature closed cycles. Due to the high costs of production of energy recuperation systems, especially rotary turbine discs equipped with blades, currently used solutions are limited in use with waste energy sources of temperature below 100 °C. This study presents the results of simulating the flow of the water vapor in various configurations of flow ducts in a reaction steam turbine based on Hero’s steam turbine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted with use of the water vapor as an internal agent powering the turbine, which is fully safe for an environment in case of a device failure. The conclusions resulting from the conducted numerical computations should allow for optimization of the flow ducts geometries, in order to achieve the greatest possible efficiency of the turbine. It is expected that the obtained results should be useful for further works related to the development of the final version of a low drag steam turbine dedicated for low cost energy recuperation systems.

Keywords: energy recuperation, CFD analysis, waste energy, steam turbine

Procedia PDF Downloads 215
9786 Performance Assessment of Ventilation Systems for Operating Theatres

Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl

Abstract:

Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.

Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks

Procedia PDF Downloads 101
9785 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece

Authors: Robel Habtemariam

Abstract:

Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.

Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources

Procedia PDF Downloads 278
9784 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 23
9783 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector

Authors: Sempiga Olivier, Dominika Latusek-Jurczak

Abstract:

Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.

Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices

Procedia PDF Downloads 19
9782 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures

Authors: H. Naderpour, R. C. Barros, S. M. Khatami

Abstract:

Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.

Keywords: pounding, impact, dissipated energy, coefficient of restitution

Procedia PDF Downloads 359
9781 The Professionalization of Teachers in the Context of the Development of a Future-Oriented Technical and Vocational Education and Training System in Egypt

Authors: Sherin Ahmed El-Badry Sadek

Abstract:

In this research, it is scientifically examined what contribution the professionalization of teachers can make to the development of a future-oriented vocational education and training system in Egypt. For this purpose, a needs assessment of the Egyptian vocational training system with the central actors and prevailing structures forms the foundation of the study, which theoretically underpinned with the attempt to resolve to some extent the tension between Luhmann's systems theory approach and the actor-centered theory of professional teacher competence. The vocational education system, in particular, must be adaptable and flexible due to the rapidly changing qualification requirements. In view of the pace of technological progress and the associated market changes, vocational training is no longer to be understood only as an educational tool aimed at those who achieve poorer academic performance or are not motivated to take up a degree. Rather, it is to be understood as a cornerstone for the development of society, and international experience shows that it is the core of lifelong learning. But to what extent have the education systems been able to react to these changes in their political, social, and technological systems? And how effective and sustainable are these changes actually? The vocational training system, in particular, has a particular impact on other social systems, which is why the appropriate parameters with the greatest leverage must be identified and adapted. Even if systems and structures are highly relevant, teachers must not hide behind them and must instead strive to develop further and to constantly learn. Despite numerous initiatives and programs to reform vocational training in Egypt, including the EU-funded Technical and Vocational Education and Training (TVET) reform phase I and phase II, the fit of the skilled workers to the needs of the labor market is still insufficient. Surveys show that the majority of employers are very dissatisfied with the graduates that the vocational training system produces. The data was collected through guideline-based interviews with experts from the education system and relevant neighboring systems, which allowed me to reconstruct central in-depth structures, as well as patterns of action and interpretation, in order to subsequently feed these into a matrix of recommendations for action. These recommendations are addressed to different decision-makers and stakeholders and are intended to serve as an impetus for the sustainable improvement of the Egyptian vocational training system. The research findings have shown that education, and in particular vocational training, is a political field that is characterized by a high degree of complexity and which is embedded in a barely manageable, highly branched landscape of structures and actors. At the same time, the vocational training system is not only determined by endogenous factors but also increasingly shaped by the dynamics of the environment and the neighboring social subsystems, with a mutual dependency relationship becoming apparent. These interactions must be taken into account in all decisions, even if prioritization of measures and thus a clear sequence and process orientation are of great urgency.

Keywords: competence orientation, educational policies, education systems, expert interviews, globalization, organizational development, professionalization, systems theory, teacher training, TVET system, vocational training

Procedia PDF Downloads 158
9780 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen

Abstract:

The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio

Procedia PDF Downloads 78
9779 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 237
9778 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures

Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt

Abstract:

A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.

Keywords: nano-indentation, size effect, multilayers, electrodeposition

Procedia PDF Downloads 153
9777 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs

Authors: Malo Pocheau-Lesteven, Olivier Le Maître

Abstract:

Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.

Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program

Procedia PDF Downloads 162
9776 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul

Authors: Nihan Gurel Ulusan

Abstract:

It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.

Keywords: educational buildings, energy efficient, illumination techniques, lighting

Procedia PDF Downloads 287
9775 Photo-Degradation of a Pharmaceutical Product in the Presence of a Catalyst Supported on a Silicoaluminophosphate Solid

Authors: I. Ben Kaddour, S. Larbaoui

Abstract:

Since their first synthesis in 1984, silicoaluminophosphates have proven their effectiveness as a good adsorbent and catalyst in several environmental and energy applications. In this work, the photocatalytic reaction of the photo-degradation of a pharmaceutical product in water was carried out in the presence of a series of materials based on titanium oxide, anatase phase, supported on the microporous framework of the SAPO4-5 at different levels, under ultraviolet light. These photo-catalysts were characterized by different physicochemical analysis methods in order to determine their structural, textural, and morphological properties, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), microscopy scanning electronics (SEM), nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS). In this study, liquid chromatography coupled with spectroscopy of mass (LC-MS) was used to determine the nature of the intermediate products formed during the photocatalytic degradation of DCF.

Keywords: photocatalysis, titanium dioxide, SAPO-5, diclofenac

Procedia PDF Downloads 72
9774 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance

Procedia PDF Downloads 411
9773 A Decentralized Application for Secure Data Handling of Wireless Networks Using Ethereum Smart Contracts

Authors: Midhun Xavier

Abstract:

This paper introduces a method to verify multi-agent systems in industrial control systems using blockchain technology. The proposed solution enables to record and verify each process that occurs while generating a customized product using Ethereum-based smart contracts. Node-Red software agents are developed with the help of semantic web technologies, and these software agents interact with IEC 61499 function blocks to execute the processes. The agent associated with each mechatronic component and its controller can communicate with the blockchain to record various events that occur during each process, and the latter smart contract helps to verify these process orders of the customized product.

Keywords: blockchain, Ethereum, node-red, IEC 61499, multi-agent system, MQTT

Procedia PDF Downloads 99