Search results for: data exchange
24394 Bifunctional Activity and Stability of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5′-Monophosphate Decarboxylase
Authors: Patsarawadee Paojinda, Waranya Imprasittichai, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai
Abstract:
Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. Here, we produced gene fusions of Plasmodium falciparum OMPDC-OPRT and expressed the bifunctional protein in Escherichia coli. The enzyme was purified to homogeneity using affinity and anion-exchange chromatography, exhibited enzymatic activities and functioned as a dimer. The activities, although unstable, can be stabilized by its substrate and product during purification and long-term storage. Furthermore, the enzyme expressed a perfect catalytic efficiency (kcat/Km). The kcat was selectively enhanced up to 3 orders of magnitude, while the Km was not much affected and remained at low µM levels when compared to the monofunctional enzymes. The fusion of the two enzymes, creating a “super-enzyme” with perfect catalytic power and more flexibility, reflects cryptic relationship of enzymatic reactivaties and metabolic functions on molecular evolution.Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum
Procedia PDF Downloads 29024393 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET
Authors: Tyler T. Procko, Steve Collins
Abstract:
New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.Keywords: API data access, database, JSON, .NET core, SQL server
Procedia PDF Downloads 7124392 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 18724391 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 13524390 Study on the Effect of Bolt Locking Method on the Deformation of Bipolar Plate in PEMFC
Authors: Tao Chen, ShiHua Liu, JiWei Zhang
Abstract:
Assembly of the proton exchange membrane fuel cells (PEMFC) has a very important influence on its performance and efficiency. The various components of PEMFC stack are usually locked and fixed by bolts. Locking bolt will cause the deformation of the bipolar plate and the other components, which will affect directly the deformation degree of the integral parts of the PEMFC as well as the performance of PEMFC. This paper focuses on the object of three-cell stack of PEMFC. Finite element simulation is used to investigate the deformation of bipolar plate caused by quantity and layout of bolts, bolt locking pressure, and bolt locking sequence, etc. Finally, we made a conclusion that the optimal combination packaging scheme was adopted to assemble the fuel cell stack. The scheme was in use of 3.8 MPa locking pressure imposed on the fuel cell stack, type Ⅱ of four locking bolts and longitudinal locking method. The scheme was obtained by comparatively analyzing the overall displacement contour of PEMFC stack, absolute displacement curve of bipolar plate along the given three paths in the Z direction and the polarization curve of fuel cell. The research results are helpful for the fuel cell stack assembly.Keywords: bipolar plate, deformation, finite element simulation, fuel cell, locking bolt
Procedia PDF Downloads 41724389 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework
Authors: Mayada Al Meghari
Abstract:
Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance
Procedia PDF Downloads 12224388 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane
Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo
Abstract:
Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler
Procedia PDF Downloads 27924387 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 40724386 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 9924385 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class
Authors: Mohammad Jamil Abd AlGhani
Abstract:
The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.Keywords: antioxidants, chemiluminescence, inhibition, Unol
Procedia PDF Downloads 20524384 Improvement of Model for SIMMER Code for SFR Corium Relocation Studies
Authors: A. Bachrata, N. Marie, F. Bertrand, J. B. Droin
Abstract:
The in-depth understanding of severe accident propagation in Generation IV of nuclear reactors is important so that appropriate risk management can be undertaken early in their design process. This paper is focused on model improvements in the SIMMER code in order to perform studies of severe accident mitigation of Sodium Fast Reactor. During the design process of the mitigation devices dedicated to extraction of molten fuel from the core region, the molten fuel propagation from the core up to the core catcher has to be studied. In this aim, analytical as well as the complex thermo-hydraulic simulations with SIMMER-III code are performed. The studies presented in this paper focus on physical phenomena and associated physical models that influence the corium relocation. Firstly, the molten pool heat exchange with surrounding structures is analysed since it influences directly the instant of rupture of the dedicated tubes favouring the corium relocation for mitigation purpose. After the corium penetration into mitigation tubes, the fuel-coolant interactions result in formation of debris bed. Analyses of debris bed fluidization as well as sinking into a fluid are presented in this paper.Keywords: corium, mitigation tubes, SIMMER-III, sodium fast reactor
Procedia PDF Downloads 39124383 The Interplay between Technology and Culture in Inbound Call Center Industry
Authors: Joseph Reylan Viray, Kriztine R. Viray
Abstract:
Call center conversations, more than the business dimensions that they normally manifest, are interactions between human beings. These are communication exchanges that are packed with psychological, cultural and social dimensions that affect the specific experience of the parties. The increasing development of information and communication technology over the past decades brought about important advantages and corresponding disadvantages in the process of communicational transactions in call center industry. It has been established that the technology is so powerful that it strongly affects, among others, call center business. In the present study, the author explores the interplay between the technology being utilized by the industry and the cultural orientations of both the call center agents and their customers in the process of communication exchanges. Specifically, the paper seeks to (1) describe the interplay between culture and technology in inbound call center industry as it affects the communication exchange of the agents and customers; (2) understand the nature and the dynamics of the call center industry as regards the cultural dimensions of Hofstede; and (3) come up with a simple study where the cross-cultural aspect of the call center industry could be highlighted and could provide necessary knowledge to the stakeholders. Cognizant of the complexity of the topic, the researchers employed Hofstede's cultural dimensions. Likewise, another theory that was used in this study is the Computer Mediated Communication Theory.Keywords: call center industry, culture, Hofstede, CMT, technology
Procedia PDF Downloads 35824382 [Keynote Talk]: Swiss Scientific Society for Developing Countries: A Concept of Relationship
Authors: Jawad Alzeer
Abstract:
Cultural setup is varied from country to country and nation to nation, but the ability to adapt successfully to the new cultural setup may pave the way toward the development of cultural intelligence. Overcoming differences may require to build up our personality with the ability to learn, exchange thoughts, and have a constructive dream. Adaptation processes can be accelerated if we effectively utilize our cultural diversity. This can be done through a unified body or society; people with common goals can collectively work to satisfy their values. Narrowing the gap between developed and developing countries is of prime importance. Many international organizations are trying to resolve these issues by rational and peaceful means. Failing to understand the cultural differences, mentalities, strengths and weaknesses of developed and developing countries led to the collapse of many partnerships. Establishment of a neutral body influenced by developed countries intellectuality and developing countries personality may offer a better understanding and reasonable solutions, suggestions, advice that may assist in narrowing gaps and promote-strengthening relationship between developed and developing countries. The key issues, goals, and potential concepts associated with initiating Swiss scientific society for developing countries as a model to facilitate integration of highly skilled scientists are discussed.Keywords: cultural diversity, developing countries, integration, Switzerland
Procedia PDF Downloads 81124381 Computational Determination of the Magneto Electronic Properties of Ce₁₋ₓCuₓO₂ (x=12.5%): Emerging Material for Spintronic Devices
Authors: Aicha Bouhlala, Sabah Chettibi
Abstract:
Doping CeO₂ with transition metals is an effective way of tuning its properties. In the present work, we have performed self-consistent ab-initio calculation using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k simulation code to study the structural, electronic, and magnetic properties of the compound Ce₁₋ₓCuₓO₂ (x=12.5%) fluorite type oxide and to explore the effects of dopant Cu in ceria. The exchange correlation potential has been treated using the Perdew-Burke-Eenzerhof revised of solid (PBEsol). In structural properties, the equilibrium lattice constant is observed for the compound, which exists within the value of 5.382 A°. In electronic properties, the spin-polarized electronic bandstructure elucidates the semiconductor nature of the material in both spin channels, with the compound was observed to have a narrow bandgap on the spin-down configuration (0.162 EV) and bandgap on the spin-up (2.067 EV). Hence, the doped atom Cu plays a vital role in increasing the magnetic moments of the supercell, and the value of the total magnetic moment is found to be 2.99438 μB. Therefore, the compound Cu-doped CeO₂ shows a strong ferromagnetic behavior. The predicted results propose the compound could be a good candidate for spintronics applications.Keywords: Cu-doped CeO₂, DFT, Wien2k, properties
Procedia PDF Downloads 26024380 Challenges and Opportunities of Intercultural Communication in Afghanistan
Authors: Kefayatullah Wahidi
Abstract:
This article examines the challenges and opportunities of intercultural communication in Afghanistan. Afghanistan, with its ancient history and location on the Silk Road, connects the great civilizations of the world. This country holds a sensitive strategic and geopolitical position in the Middle East. In Afghanistan, various ethnic groups live, each with distinct linguistic, religious, and racial cultures. In today's world, elements such as identity, religion, and culture form the main components of international political relations. In some cases, these factors can even overshadow the materialistic and self-interest-driven aspects of international relations. Therefore, we used a qualitative case study method (using interviews) for this research. In this context, we attempted to discuss the issues and problems related to the challenges and opportunities of intercultural communication, with the participation of a sample of 12 Afghan people. The findings of this research show that Afghanistan is facing many challenges in the field of intercultural communication. Cultural dissatisfaction, linguistic and religious differences, and cultural sanctions are among the major challenges that can cause tensions and a lack of mutual understanding. At the same time, intercultural communication is an opportunity to increase mutual understanding, cultural exchange, and constructive interactions. Please note that I have made some minor edits for clarity and grammar, but the overall content remains the same.Keywords: cultural dissatisfactions, language differences, intercultural communication, Afghanistan
Procedia PDF Downloads 5124379 Blockchain’s Feasibility in Military Data Networks
Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam
Abstract:
Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing
Procedia PDF Downloads 14324378 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster
Authors: Trapti Sharma, Devesh Kumar Srivastava
Abstract:
This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.Keywords: hadoop, mapreduce, k-mediod, validation, verification
Procedia PDF Downloads 37424377 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization
Procedia PDF Downloads 19324376 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"
Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam
Abstract:
CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software
Procedia PDF Downloads 7024375 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 7324374 A Conversational Chatbot for Cricket Analytics
Authors: Kishan Bharadwaj Shridhar
Abstract:
Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.
Procedia PDF Downloads 1724373 Research Cooperation between of Ukraine in Terms of Food Chain Safety Control in the Frame of MICRORISK Project
Authors: Kinga Wieczorek, Elzbieta Kukier, Remigiusz Pomykala, Beata Lachtara, Renata Szewczyk, Krzysztof Kwiatek, Jacek Osek
Abstract:
The MICRORISK project (Research cooperation in assessment of microbiological hazard and risk in the food chain) was funded by the European Commission under the FP7 PEOPLE 2012 IRSES call within the International Research Staff Exchange Scheme of Marie Curie Action and realized during years from 2014 to 2015. The main aim of the project was to establish a cooperation between the European Union (EU) and the third State in the area important from the public health point of view. The following organizations have been engaged in the activity: National Veterinary Research Institute (NVRI) in Pulawy, Poland (coordinator), French Agency for Food, Environmental and Occupational Health & Safety (ANSES) in Maisons Alfort, France, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkov and State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE) Kijev Ukraine. The results of the project showed that Ukraine used microbiological criteria in accordance with Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Compliance concerns both the criteria applicable at the stage of food safety (retail trade), as well as evaluation criteria and process hygiene in food production. In this case, the Ukrainian legislation also provides application of the criteria that do not have counterparts in the food law of the European Union, and are based on the provisions of Ukrainian law. Partial coherence of the Ukrainian and EU legal requirements in terms of microbiological criteria for food and feed concerns microbiological parameters such as total plate count, coliforms, coagulase-positive Staphylococcus spp., including S. aureus. Analysis of laboratory methods used for microbiological hazards control in food production chain has shown that most methods used in the EU are well-known by Ukrainian partners, and many of them are routinely applied as the only standards in the laboratory practice or simultaneously used with Ukrainian methods. The area without any legislation, where the EU regulation and analytical methods should be implemented is the area of Shiga toxin producing E. coli, including E. coli O157 and staphylococcal enterotoxin detection. During the project, the analysis of the existing Ukrainian and EU data concerning the prevalence of the most important food-borne pathogens on different stages of food production chain was performed. Particularly, prevalence of Salmonella spp., Campylobacter spp., L. monocytogenes as well as clostridia was examined. The analysis showed that poultry meat still appears to be the most important food-borne source of Campylobacter and Salmonella in the UE. On the other hand, L. monocytogenes were seldom detected above the legal safety limit (100 cfu/g) among the EU countries. Moreover, the analysis revealed the lack of comprehensive data regarding the prevalence of the most important food-borne pathogens in Ukraine. The results of the MICRORISK project are networking activities among researches originations participating in the tasks will help with a better recognition of each other regarding very important, from the public health point of view areas such as microbiological hazards in the food production chain and finally will help to improve food quality and safety for consumers.Keywords: cooperation, European Union, food chain safety, food law, microbiological risk, Microrisk, Poland, Ukraine
Procedia PDF Downloads 37924372 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration
Procedia PDF Downloads 58024371 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 20124370 Global City Typologies: 300 Cities and Over 100 Datasets
Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans
Abstract:
Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling
Procedia PDF Downloads 18724369 Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages
Authors: Annie B. V., Anu A. G., Harikumar R.
Abstract:
Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies.Keywords: DC microgrid, hybrid energy storage system (HESS), power management, small signal modeling, supercapacitor
Procedia PDF Downloads 25524368 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means
Procedia PDF Downloads 26524367 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile
Authors: Reira Kinoshita, Shin'ichi Ishimaru
Abstract:
Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds
Procedia PDF Downloads 12424366 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 4824365 Quality Assurance for the Climate Data Store
Authors: Judith Klostermann, Miguel Segura, Wilma Jans, Dragana Bojovic, Isadora Christel Jimenez, Francisco Doblas-Reyees, Judit Snethlage
Abstract:
The Climate Data Store (CDS), developed by the Copernicus Climate Change Service (C3S) implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, is intended to become a key instrument for exploring climate data. The CDS contains both raw and processed data to provide information to the users about the past, present and future climate of the earth. It allows for easy and free access to climate data and indicators, presenting an important asset for scientists and stakeholders on the path for achieving a more sustainable future. The C3S Evaluation and Quality Control (EQC) is assessing the quality of the CDS by undertaking a comprehensive user requirement assessment to measure the users’ satisfaction. Recommendations will be developed for the improvement and expansion of the CDS datasets and products. User requirements will be identified on the fitness of the datasets, the toolbox, and the overall CDS service. The EQC function of the CDS will help C3S to make the service more robust: integrated by validated data that follows high-quality standards while being user-friendly. This function will be closely developed with the users of the service. Through their feedback, suggestions, and contributions, the CDS can become more accessible and meet the requirements for a diverse range of users. Stakeholders and their active engagement are thus an important aspect of CDS development. This will be achieved with direct interactions with users such as meetings, interviews or workshops as well as different feedback mechanisms like surveys or helpdesk services at the CDS. The results provided by the users will be categorized as a function of CDS products so that their specific interests will be monitored and linked to the right product. Through this procedure, we will identify the requirements and criteria for data and products in order to build the correspondent recommendations for the improvement and expansion of the CDS datasets and products.Keywords: climate data store, Copernicus, quality, user engagement
Procedia PDF Downloads 150