Search results for: Yogendra Kumar Gupta
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2014

Search results for: Yogendra Kumar Gupta

64 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
63 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 84
62 Evaluation of Magnificent Event of India with Special Reference to Maha Kumbha Mela (Fair) 2013-A Congregation of Millions

Authors: Sharad Kumar Kulshreshtha

Abstract:

India is a great land of cultural and traditional diversity. Its spectrums create a unique ambiance in all over the country. Specially, fairs and festivals are ancient phenomena in Indian culture. In India, there are thousands of such religious, spiritual, cultural fairs organized on auspicious occasions. These fairs reflect the effective and efficient role of social governance and responsibility of Indian society. In this context a mega event known as ‘Kumbha Mela’ literally mean ‘Kumbha Fair’ which is organize after every twelve years at (Prayaag) Allahabad an ancient city of India, now is in the state of Uttar Pradesh. Kumbh Mela is one of the largest human congregations on the Earth. The Kumbha Mela that is held here is considered to be the largest and holiest city among the four cities where Kubha fair organize. According to the Hindu religious scripture a dip for possessing the holy confluence, known as Triveni Sangam, which is a meeting point of the three sacred rivers of India i.e., –Ganges, Yamuna and Saraswati (mythical). During the Kumbha fair the River Ganges is believed to turn to nectar, bringing great blessing to everyone who bathes in it. Other activities include religious discussions, devotional singings and mass feedings pilgrims and poor. The venue for Kumbh Mela (fair) depends on the position Sun, Moon, and Jupiter which holds in that period in different zodiac signs. More than 120 Millions (12 Crore) people visited in the Kumbha Fair-2013 in Allahabad. A temporary tented city was set up for the pilgrims over an area of 2 hectares of the land along the river of Ganges. As many as 5 power substations, temporary police stations, hospitals, bus terminals, stalls were set up for providing various facilities to the visitors and thousands of volunteers participated for assistance of this event. All efforts made by fair administration to provide facility to visitors, such security and sanitation, medical care and frequent water and power supply. The efficient and timely arrangement at the Kumbha Mela attracted the attention of many government and institutions. The Harvard University of USA conducted research to find out how it was made possible. This paper will focuses on effective and efficient planning and preparation of Kumbha Fair which includes facilitation process, role of various coordinating agencies. risk management crisis management strategies Prevention, Preparedness, Response, and Recovery (PPRR Approach), emergency response plan (ERP), safety and security issues, various environmental aspects along with health hazards and hygiene crowd management, evacuation, monitoring, control and evaluation.

Keywords: event planning and facility arrangement, risk management, crowd management, India

Procedia PDF Downloads 305
61 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 224
60 Forests, the Sanctuaries to Specialist and Rare Wild Native Bees at the Foothills of Western Himalayas

Authors: Preeti Virkar, V. P. Uniyal, Vinod Kumar Bhatt

Abstract:

With 50% decline in managed honey bee hives in the continents of Europe and America, farmers and landscape managers are turning to native wild bees for their essential ecosystem services of pollination. Wild bees population are too under danger due to the rapid land use changes from anthropogenic activities. With an escalating population reaching 9.0 billion by 2050, human-induced land use changes are predicted to further deteriorate the habitats of numerous species by the turn of this century. The status of bees are uncertain, especially in the tropical regions of the world, which also questions the crisis of global pollinator decline and their essential services to wild and managed flora. Our investigation collectively compares wild native bee diversity and their status in forests and agroecosystems in Doon Valley landscape, situated at the foothills of Himalayan ranges, Uttarakhand, India. We seek to ask whether (1) natural habitat are refuge to richer and rarer bees communities than the agroecosystems, (2) Are agroecosystems closer to natural habitats similar to them than agroecosystems farther away; hence support richer bee communities and hence, (3) Do polyculture farms support richer bee communities than monoculture. The data was collected using observation and pantrap sampling form February to May, 2012 to 2014. We recorded 43 species of bees in Doon Valley. They belonged to 5 families; Megachilidae, Apidae, Andrenidae, Halictidae and Collitidae. A multinomial model approach was used to classify the bees into 2 habitats, in which forests demonstrated to support greater number of specialist (26%, n= 11) species than agroecosystems (7%, n= 3). The valley had many species categorized as the rare (58%, n= 25) and very few generalists (9%, n=4). A linear regression model run on our data demonstrated higher bee diversity in agro-ecosystems in close proximity to forests (H’ for < 200 m = 1.60) compared to those further away (H’ for > 600 m = 0.56) (R2=0.782, SE=0.148, p value=0.004). Organic agriculture supported significantly greater species richness in comparison to conventional farms (Mann-Whitney U test, n1 = 33, n2 = 35; P = 0.001). Forests ecosystems are refuge to rare specialist groups and support bee communities in nearby agroecosystems. The findings of our investigation demonstrate the importance of natural habitats as a potential refuge for rare native wild bee pollinators. Polyculture in the valley behaves similar to natural habitats and supports diverse bee communities in comparison to conventional monocultures. Our study suggests that the farming communities adopt diverse organic agriculture systems to attract wild pollinators beneficial for better crop production. Forests are sanctuaries for bees to nest, forage, and breed. Therefore, our outcome also suggests landscape managers not only preserve protected areas but also enhance the floral diversity in semi-natural and urban areas.

Keywords: native bees, pollinators, polyculture, agroecosystem, natural habitat, diversity, monoculture, specialists, generalists

Procedia PDF Downloads 217
59 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India

Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena

Abstract:

India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.

Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market

Procedia PDF Downloads 42
58 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
57 Species Profiling of Scarab Beetles with the Help of Light Trap in Western Himalayan Region of Uttarakhand

Authors: Ajay Kumar Pandey

Abstract:

White grub (Coleoptera: Scarabaeidae), locally known as Kurmula, Pagra, Chinchu, is a major destructive pest in western Himalayan region of Uttarakhand state of India. Various crops like cereals (up land paddy, wheat, and barley), vegetables (capsicum, cabbage, tomato, cauliflower, carrot etc) and some pulse (like pigeon pea, green gram, black gram) are grown with limited availability of primary resources. Among the various limitations in successful cultivation of these crops, white grub has been proved a major constraint in for all crops grown in hilly area. The losses incurred due to white grubs are huge in case of commercial crops like sugarcane, groundnut, potato, maize and upland rice. Moreover, it has been proved major constraint in potato production in mid and higher hills of India. Adults emerge in May-June following the onset of monsoon and thereafter defoliate the apple, apricot, plum, and walnut during night while 2nd and 3rd instar grubs feed on live roots of cultivated as well as non cultivated crops from August to January. Survey was conducted in hilly (Pauri and Tehri) as well as plain area (Haridwar district) of Uttarakhand state. Collection of beetle was done from various locations from August to September of five consecutive years with the help of light trap and directly from host plant. The grub was also collected by excavating one square meter area from different locations and reared in laboratory to find out adult. During the collection, the diseased or dead cadaver were also collected and brought in the laboratory and identified the causal organisms. Total 25 species of white grub was identified out of which Holotrichia longipennis, Anomala dimidiata, Holotrichia lineatopennis, Maladera insanabilis, Brahmina sp. make complex problem in different area of Uttarakhand where they cause severe damage to various crops. During the survey, it was observed that white grubs beetles have variation in preference of host plant, even in choice of fruit and leaves of host plant. It was observed that, a white grub species, which identified as Lepidiota mansueta Burmeister., was causing severe havoc to sugarcane crop grown in major sugarcane growing belt of Haridwar district. The study also revealed that Bacillus cereus, Beauveria bassiana, Metarhizium anisopliae, Steinernema, Heterorhabditis are major disease causing agents in immature stage of white grub under rain-fed condition of Uttarakhand which caused 15.55 to 21.63 percent natural mortality of grubs with an average of 18.91 percent. However, among the microorganisms, B. cereus found to be significantly more efficient (7.03 percent mortality) then the entomopathogenic fungi (3.80 percent mortality) and nematodes (3.20 percent mortality).

Keywords: Lepidiota, profiling, Uttarakhand, whitegrub

Procedia PDF Downloads 220
56 Development and Evaluation of Economical Self-cleaning Cement

Authors: Anil Saini, Jatinder Kumar Ratan

Abstract:

Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.

Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination

Procedia PDF Downloads 170
55 Evolution of Antimicrobial Resistance in Shigella since the Turn of 21st Century, India

Authors: Neelam Taneja, Abhishek Mewara, Ajay Kumar

Abstract:

Multidrug resistant shigellae have emerged as a therapeutic challenge in India. At our 2000 bed tertiary care referral centre in Chandigarh, North India, which caters to a large population of 7 neighboring states, antibiotic resistance in Shigella is being constantly monitored. Shigellae are isolated from 3 to 5% of all stool samples. In 1990 nalidixic acid was the drug of choice as 82%, and 63% of shigellae were resistant to ampicillin and cotrimoxazole respectively. Nalidixic acid resistance emerged in 1992 and rapidly increased from 6% during 1994-98 to 86% by the turn of 21st century. In the 1990s, the WHO recommended ciprofloxacin as the drug of choice for empiric treatment of shigellosis in view of the existing high level resistance to agents like chloramphenicol, ampicillin, cotrimoxazole and nalidixic acid. First resistance to ciprofloxacin in S. flexneri at our centre appeared in 2000 and rapidly rose to 46% in 2007 (MIC>4mg/L). In between we had an outbreak of ciprofloxacin resistant S.dysenteriae serotype 1 in 2003. Therapeutic failures with ciprofloxacin occurred with both ciprofloxacin-resistant S. dysenteriae and ciprofloxacin-resistant S. flexneri. The severity of illness was more with ciprofloxacin-resistant strains. Till 2000, elsewhere in the world ciprofloxacin resistance in S. flexneri was sporadic and uncommon, though resistance to co-trimoxazole and ampicillin was common and in some areas resistance to nalidixic acid had also emerged. Fluoroquinolones due to extensive use and misuse for many other illnesses in our region are thus no longer the preferred group of drugs for managing shigellosis in India. WHO presently recommends ceftriaxone and azithromycin as alternative drugs to fluoroquinolone-resistant shigellae, however, overreliance on this group of drugs also seems to soon become questionable considering the emerging cephalosporin-resistant shigellae. We found 15.1% of S. flexneri isolates collected over a period of 9 years (2000-2009) resistant to at least one of the third-generation cephalosporins (ceftriaxone/cefotaxime). The first isolate showing ceftriaxone resistance was obtained in 2001, and we have observed an increase in number of isolates resistant to third generation cephalosporins in S. flexneri 2005 onwards. This situation has now become a therapeutic challenge in our region. The MIC values for Shigella isolates revealed a worrisome rise for ceftriaxone (MIC90:12 mg/L) and cefepime (MIC90:8 mg/L). MIC values for S. dysenteriae remained below 1 mg/L for ceftriaxone, however for cefepime, the MIC90 has raised to 4 mg/L. These infections caused by ceftriaxone-resistant S. flexneri isolates were successfully treated by azithromycin at our center. Most worrisome development in the present has been the emergence of DSA(Decreased susceptibility to azithromycin) which surfaced in 2001 and has increased from 4.3% till 2011 to 34% thereafter. We suspect plasmid-mediated resistance as we detected qnrS1-positive Shigella for the first time from the Indian subcontinent in 2 strains from 2010, indicating a relatively new appearance of this PMQR determinant among Shigella in India. This calls for a continuous and strong surveillance of antibiotic resistance across the country. The prevention of shigellosis by developing cost-effective vaccines is desirable as it will substantially reduce the morbidity associated with diarrhoea in the country

Keywords: Shigella, antimicrobial, resistance, India

Procedia PDF Downloads 229
54 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics

Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh

Abstract:

Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.

Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity

Procedia PDF Downloads 144
53 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 70
52 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 162
51 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 140
50 Need and Willingness to Use ‘Meditation on Twin Hearts’ for Management of Anxiety and Depression for the Transgender Community: A Pilot Study

Authors: Neha Joshi, Srikanth Jois, Hector J. Peughero, Poornima Jayakrishna, Moulya R., Purnima Madivanan, Kiran Kumar K. Salagame

Abstract:

Transgenders are a marginalized section of the community, who are at high risk of mental health problems due to their stigmatization, abandonment by family, prejudice, discrimination by society at large, and the physical, emotional, and sexual abuse from both within and outside their community. Their mental healthcare needs remain largely unaddressed due to lack of access, discrimination by healthcare professions, and lack of resources, including time and money, to seek conventional medical and psychotherapeutic treatments. Meditation is increasingly receiving acceptance as a tool for managing stress and anxiety by the patients as well as mental healthcare professionals. “Meditation on Twin Hearts” is a no cost, self-administered intervention that a person can practice anywhere and at any time of the day. This pilot study evaluates the need for alternate traditional and ingenious interventions like “Meditation of Twin Hearts” to address the mental healthcare needs of the transgender community and acceptance of such an intervention by the community. Thirteen individuals identifying themselves as transgender were invited to participate in one (Hunsur Taluk) of the five scheduled free meditation camps in Mysore. After obtaining informed consent for participation in the study, their mental health status is captured using an anonymous survey using standard, validated, self-reported questionnaires Generalised Anxiety Disorders (GAD)-7 for anxiety, Patient Health Questionnaire (PHQ-9) for depression, and Suicidal Behavior Questionnaire-Revised for suicidality. Then, they were requested to attend a session on “Meditation on Twin Hearts.” After the session, their feedback on willingness to further explore the meditation technique for managing their mental healthcare need was assessed through another survey form. Out of the 13 participants, 92% scored for anxiety (4 mild, and 8 moderate anxiety). In the depression scale, 5 scored for mild and 5 for moderate depression, with a total of 77% (10/13) scoring positively on depression scale. Nearly 70% of participants (9/13), scored greater than the clinical cutoff for the need for clinical intervention. The proportion of individuals at risk for suicide was particularly high in this group, with 8/ 13 (61.5%) participants scoring the clinical cutoff score of ≥ 7. Surprisingly, none of the participants had ever consulted a mental healthcare professional. All the participants (13/13; 100%) responded in affirmative to the question, “Will you be willing to continue meditation for management of your anxiety?” Six out of 13 participants described their experience of meditation as “happy” and 3 described it as “peaceful”. None of the participants reported any negative beliefs or experience regarding the meditation. The study provides evidence for the urgent yet unmet mental healthcare need of the transgender community. The findings of the study also supports the rationale of conducting future systematic research to evaluate and explore ingenious and traditional practices, such as meditation, to meet the healthcare needs, especially in marginalized populations in a low income setting such as Lower and Middle Income countries. Based on these preliminary findings, the Principal Investigator (PI) is planning to cover 4 more areas of Mysore district.

Keywords: anxiety, depression, meditation on twin heart, suicidality, transgender

Procedia PDF Downloads 199
49 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage

Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh

Abstract:

Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.

Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range

Procedia PDF Downloads 162
48 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties

Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim

Abstract:

The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.

Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification

Procedia PDF Downloads 125
47 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 128
46 NEOM Coast from Intertidal to Sabkha Systems: A Geological Overview

Authors: Mohamed Abouelresh, Subhajit Kumar, Lamidi Babalola, Septriandi Chan, Ali Al Musabeh A., Thadickal V. Joydas, Bruno Pulido

Abstract:

Neom has a relatively long coastline on the Red Sea and the Gulf of Aqaba, which is about 300 kilometres long, in addition to many naturally formed bays along the Red Sea coast. Undoubtedly, these coasts provide an excellent opportunity for tourism and other activities; however, these coastal areas host a wide range of salinity-dependent ecosystems that need to be protected. The main objective of the study was to identify the coastal features, including tidal flats and salt flats, along the NEOM coast. A base map of the study area generated from the satellite images contained the main landform features and, in particular, the boundaries of the inland and coastal sabkhas. A field survey was conducted to map and characterize the intertidal and sabkha landforms. The coastal and inner coastal areas of NEOM are mainly covered by the quaternary sediments, which include gravel sheets, terraces, raised reef limestone, evaporite successions, eolian dunes, and undifferentiated sand/gravel deposits (alluvium, alluvial outwash, wind-blown sand beach). There are different landforms that characterizes the NEOM coast, including rocky coast, tidal zone, and sabkha. Sabkha area ranges between a few to tens of square kilometers. Coastal sabkha extended across the shoreline of NEOM, specifically at Gayal and Sharma areas, while the continental sabkha only existed at Gayal Town. The inland Sabkha at Gayal is mainly composed of a thin (15-25 cm) evaporite crust composed of a dark brown, cavernous, rugged, pitted, colloidal salty sand layer with salt-tolerant vegetation. The inland Sabkha is considered a groundwater-driven sedimentary system as indicated by syndepositional intra-sediment capillary evaporites, which precipitate in both marine and continental salt flats. Gayal coastal Sabkha is made up of tidal inlets, tidal creeks, and lagoons followed in a landward direction with well-developed sabkha layers. The surface sediments of the coastal Sabkha are composed of unlithified calcareous, gypsiferous, coarse to medium sands, and silt with bioclastic fragments underlain by several organic-rich layers. The coastal flat is graded landward into widespread, flat vegetated Sabkhas dissected by tributaries of the fluvial system, which debouches to the Red Sea. The coast from Gayal to Magna through Ras El-Sheikh Humaid is continuously subjected to tidal flows, which create an intertidal depositional system. The intertidal flats at NEOM are extensive, nearly horizontal land forming a very dynamic system in which several physical, chemical, geomorphological, and biological processes are acting simultaneously. The current work provides a field-based identification of the coastal sabkha and intertidal sites at NEOM. However, the mutual interaction between tidal flows and sabkha development, particularly at Gayal, needs to be well understood through comprehensive field and lab analysis.

Keywords: coast, intertidal, deposition, sabkha

Procedia PDF Downloads 82
45 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India

Authors: G. Kiran Kumar, K. Padmaja

Abstract:

The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.

Keywords: environment, food security, urban and peri-urban agriculture, zoning

Procedia PDF Downloads 319
44 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 347
43 The First Complete Mitochondrial Genome of Melon Thrips, Thrips palmi (Thripinae: Thysanoptera): Vector for Tospoviruses

Authors: Kaomud Tyagi, Rajasree Chakraborty, Shantanu Kundu, Devkant Singha, Kailash Chandra, Vikas Kumar

Abstract:

The melon thrips, Thrips palmi is a serious pest of a wide range of agriculture crops and also act as vectors for plant viruses (genus Tospovirus, family Bunyaviridae). More molecular data on this species is required to understand the cryptic speciation and evolutionary affiliations. Mitochondrial genomes have been widely used in phylogenetic and evolutionary studies in insect. So far, mitogenomes of five thrips species (Anaphothrips obscurus, Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis and Thrips imaginis) is available in the GenBank database. In this study, we sequenced the first complete mitogenome T. palmi and compared it with available thrips mitogenomes. We assembled the mitogenome from the whole genome sequencing data generated using Illumina Hiseq2500. Annotation was performed using MITOS web-server to estimate the location of protein coding genes (PCGs), transfer RNA (tRNAs), ribosomal RNAs (rRNAs) and their secondary structures. The boundaries of PCGs and rRNAs was confirmed manually in NCBI. Phylogenetic analyses were performed using the 13 PCGs data using maximum likelihood (ML) in PAUP, and Bayesian inference (BI) in MrBayes 3.2. The complete mitogenome of T. palmi was 15,333 base pairs (bp), which was greater than the genomes of A. obscurus (14,890bp), F. intonsa (15,215 bp), F. occidentalis (14,889 bp) and S. dorsalis South Asia strain (SA1) (14,283 bp), but smaller than the genomes of T. imaginis (15,407 bp) and S. dorsalis East Asia strain (EA1) (15,343bp). Like in other thrips species, the mitochondrial genome of T. palmi was represented by 37 genes, including 13 PCGs, large and small ribosomal RNA (rrnL and rrnS) genes, 22 transfer RNA (tRNAs) genes (with one extra gene for trn-Serine) and two A+T-rich control regions (CR1 and CR2). Thirty one genes were observed on heavy (H) strand and six genes on the light (L) strand. The six tRNA genes (trnG,trnK, trnY, trnW, trnF, and trnH) were found to be conserved in all thrips species mitogenomes in their locations relative to a protein-coding or rRNA gene upstream or downstream. The gene arrangements of T. palmi is very close to T. imaginis except the rearrangements in tRNAs genes: trnR (arginine), and trnE (glutamic acid) were found to be located between cox3 and CR2 in T. imaginis which were translocated between atp6 and CR1 in T. palmi; trnL1 (Leucine) and trnS1(Serine) were located between atp6 and CR1 in T. imaginis which were translocated between cox3 and CR2 in T. palmi. The location of CR1 upstream of nad5 gene was suggested to be ancestral condition of the thrips species in subfamily Thripinae, was also observed in T. palmi. Both the Maximum likelihood (ML) and Bayesian Inference (BI) phylogenetic trees generated resulted in similar topologies. The T. palmi was clustered with T. imaginis. We concluded that more molecular data on the diverse thrips species from different hierarchical level is needed, to understand the phylogenetic and evolutionary relationships among them.

Keywords: thrips, comparative mitogenomics, gene rearrangements, phylogenetic analysis

Procedia PDF Downloads 168
42 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 67
41 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles

Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi

Abstract:

Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.

Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures

Procedia PDF Downloads 256
40 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 49
39 From Indigeneity to Urbanity: A Performative Study of Indian Saang (Folk Play) Tradition

Authors: Shiv Kumar

Abstract:

In the shifting scenario of postmodern age that foregrounds the multiplicity of meanings and discourses, the present research article seeks to investigate various paradigm shift of contemporary performances concerning Haryanvi Saangs, so-called folk plays, which are being performed widely in the regional territory of Haryana, a northern state of India. Folk arts cannot be studied efficiently by using the tools of literary criticism because it differs from the literature in many aspects. One of the most essential differences is that literary works invariably have an author. Folk works, on the contrary, never have an author. The situation is quite clear: either we acknowledge the presence of folk art as a phenomenon in the social and cultural history of people, or we do not acknowledge it and argue it is a poetical or art of fiction. This paper is an effort to understand the performative tradition of Saang which is traditionally known as Saang, Swang or Svang became a popular source for instruction and entertainment in the region and neighbouring states. Scholars and critics have long been debating about the origin of the word swang/svang/saang and their relationship to the Sanskrit word –Sangit, which means singing and music. But in the cultural context of Haryana, the word Saang means ‘to impersonate’ or ‘to imitate’ or ‘to copy someone or something’. The stories they portray are derived for the most part from the same myths, tales, epics and from the lives of Indian religious and folk heroes. Literally, the use of poetic sense, the implication of prose style and elaborate figurative technique are worthwhile to compile the productivity of a performance. All use music and song as an integral part of the performance so that it is also appropriate to call them folk opera. These folk plays are performed strictly by aboriginal people in the state. These people, sometimes denominated as Saangi, possess a culture distinct from the rest of Indian folk performances. The concerned form is also known with various other names like Manch, Khayal, Opera, Nautanki. The group of such folk plays can be seen as a dynamic activity and performed in the open space of the theatre. Nowadays, producers contributed greatly in order to create a rapidly growing musical outlet for budding new style of folk presentation and give rise to the electronic focus genre utilizing many musicians and performers who had to become precursors of the folk tradition in the region. Moreover, the paper proposes to examine available sources relative to this article, and it is believed to draw some different conclusions. For instance, to be a spectator of ongoing performances will contribute to providing enough guidance to move forward on this root. In this connection, the paper focuses critically upon the major performative aspects of Haryanvi Saang in relation to several inquiries such as the study of these plays in the context of Indian literary scenario, gender visualization and their dramatic representation, a song-music tradition in folk creativity and development of Haryanvi dramatic art in the contemporary socio-political background.

Keywords: folk play, indigenous, performance, Saang, tradition

Procedia PDF Downloads 156
38 Cystic Ganglionosis in Child: Rare Entity

Authors: Jatinder Pal Singh, Harpreet Singh, Gagandeep Singh Digra, Mandeep Kaur Sidhu, Pawan Kumar

Abstract:

Introduction: Ganglion cyst is a benign condition in which there is a cystic lesion in relation to a joint or a tendon sheath arising from myxoid degeneration of fibrous connective tissue. These can be unilocular or multilocular. In rare cases, there may be multiple ganglion cysts, known as cystic ganglionosis. They can occur at any age but are commonly seen in adults. Clinically they may be asymptomatic or present as swelling or mass effect in adjacent structures. These are common in extremities such as hands and feet. Case Presentation: 11-year-old female child presented with slowly progressive painless swelling of her right hand since the age of 4. Antenatal and perinatal history was unremarkable. Her family history was negative. She denies fever, malaise, morning stiffness, weight loss, fatigue, restriction of joint movements, or any sensory and motor deficit. Lab parameters were negative for inflammatory or infectious etiology. No other joint or extremity involvement was present. On physical examination, the swelling was present on the dorsum and palmer aspect of the right hand and wrist. They were non-tender on palpation without any motor or sensory deficit. MRI hand revealed multiple well-defined fluid signal intensity cystic appearing lesions in periarticular/intraarticular locations in relation to distal radio-ulnar, radio-carpal, intercarpal, carpometacarpal, metacarpophalangeal and interphalangeal joints as well as peritendinous location around flexor tendons more so in the region of wrist, palm, 1st and 5th digit and along extensor tendons in the region of wrist, largest one noted along flexor pollicis longus tendon in thenar region and along 1st digit measuring approx. 4.6 x 1.2 x 1.2 centimeter. Pressure erosions and bone remodelling were noted in the bases of the 2nd to 5th metacarpals, capitate, trapezoid, the distal shaft of 1st metacarpal, and proximal phalanx of 1st digit. Marrow edema was noted in the base and proximal shaft of the 4th metacarpal and proximal shaft of the 3rd metacarpal – likely stress or pressure related. The patient was advised of aspiration, but the family refused the procedure. Therefore the patient was kept on conservative treatment. Conclusion: Cystic ganglionosis is a rare condition with very few cases reported in the medical literature. Its prevalence and association are not known because of the rarity of this condition. It should be considered as an important differential in patients presenting with soft tissue swelling in extremities. Treatment option includes conservative management, aspiration, and surgery. Aspiration has a high recurrence rate. Although surgery has a low recurrence rate, it carries a high rate of complications. Imaging with MRI is essential for confirmation of the cystic nature of lesions and their relation with the joint capsules or tendons. This helps in differentiating from other soft tissue lesions and presurgical planning.

Keywords: radiology, rare, cystic ganglionosis, child

Procedia PDF Downloads 77
37 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 94
36 Mycophenolate Mofetil Increases Mucin Expression in Primary Cultures of Oral Mucosal Epithelial Cells for Application in Limbal Stem Cell Deficiency

Authors: Sandeep Kumar Agrawal, Aditi Bhattacharya, Janvie Manhas, Krushna Bhatt, Yatin Kholakiya, Nupur Khera, Ajoy Roychoudhury, Sudip Sen

Abstract:

Autologous cultured explants of human oral mucosal epithelial cells (OMEC) are a potential therapeutic modality for limbal stem cell deficiency (LSCD). Injury or inflammation of the ocular surface in the form of burns, chemicals, Stevens Johnson syndrome, ocular cicatricial pemphigoid etc. can lead to destruction and deficiency of limbal stem cells. LSCD manifests in the form of severe ocular surface diseases (OSD) characterized by persistent and recurrent epithelial defects, conjuntivalisation and neovascularisation of the corneal surface, scarring and ultimately opacity and blindness. Most of the cases of OSD are associated with severe dry eye pertaining to diminished mucin and aqueous secretion. Mycophenolate mofetil (MMF) has been shown to upregulate the mucin expression in conjunctival goblet cells in vitro. The aim of this study was to evaluate the effects of MMF on mucin expression in primary cultures of oral mucosal epithelial cells. With institutional ethics committee approval and written informed consent, thirty oral mucosal epithelial tissue samples were obtained from patients undergoing oral surgery for non-malignant conditions. OMEC were grown on human amniotic membrane (HAM, obtained from expecting mothers undergoing elective caesarean section) scaffold for 2 weeks in growth media containing DMEM & Ham’s F12 (1:1) with 10% FBS and growth factors. In vitro dosage of MMF was standardised by MTT assay. Analysis of stem cell markers was done using RT-PCR while mucin mRNA expression was quantified using RT-PCR and q-PCR before and after treating cultured OMEC with graded concentrations of MMF for 24 hours. Protein expression was validated using immunocytochemistry. Morphological studies revealed a confluent sheet of proliferating, stratified oral mucosal epithelial cells growing over the surface of HAM scaffold. The presence of progenitor stem cell markers (p63, p75, β1-Integrin and ABCG2) and cell surface associated mucins (MUC1, MUC15 and MUC16) were elucidated by RT-PCR. The mucin mRNA expression was found to be upregulated in MMF treated primary cultures of OMEC, compared to untreated controls as quantified by q-PCR with β-actin as internal reference gene. Increased MUC1 protein expression was validated by immunocytochemistry on representative samples. Our findings conclude that OMEC have the ability to form a multi-layered confluent sheet on the surface of HAM similar to a cornea, which is important for the reconstruction of the damaged ocular surface. Cultured OMEC has stem cell properties as demonstrated by stem cell markers. MMF can be a novel enhancer of mucin production in OMEC. It has the potential to improve dry eye in patients undergoing OMEC transplantation for bilateral OSD. Further clinical trials are required to establish the role of MMF in patients undergoing OMEC transplantation.

Keywords: limbal stem cell deficiency, mycophenolate mofetil, mucin, ocular surface disease

Procedia PDF Downloads 330
35 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 240