Search results for: metal oxide nanoparticles
2684 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing
Authors: Daniel Phifer, Anna Prokhodtseva
Abstract:
DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell
Procedia PDF Downloads 2112683 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin
Authors: Yulistiani, Muhammad Amin, Fasich
Abstract:
A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential
Procedia PDF Downloads 3422682 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences
Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan
Abstract:
Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies
Procedia PDF Downloads 2942681 Magnetic Bio-Nano-Fluids for Hyperthermia
Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak
Abstract:
Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron
Procedia PDF Downloads 4202680 Recovery of Zn from Different Çinkur Leach Residues by Acidic Leaching
Authors: Mehmet Ali Topçu, Aydın Ruşen
Abstract:
Çinkur is the only plant in Turkey that produces zinc from primary ore containing zinc carbonate from its establishment until 1997. After this year, zinc concentrate coming from Iran was used in this plant. Therefore, there are two different leach residues namely Turkish leach residue (TLR) and Iranian leach residue (ILR), in Çinkur stock piles. This paper describes zinc recovery by sulphuric acid (H2SO4) treatment for each leach residue and includes comparison of blended of TLR and ILR. Before leach experiments; chemical, mineralogical and thermal analysis of three different leach residues was carried out by using atomic absorption spectrometry (AAS), X-Ray diffraction (XRD) and differential thermal analysis (DTA), respectively. Leaching experiments were conducted at optimum conditions; 100 oC, 150 g/L H2SO4 and 2 hours. In the experiments, stirring rate was kept constant at 600 r/min which ensures complete mixing in leaching solution. Results show that zinc recovery for Iranian LR was higher than Turkish LR due to having different chemical composition from each other.Keywords: hydrometallurgy, leaching, metal extraction, metal recovery
Procedia PDF Downloads 3572679 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 1362678 Nanobiomaterials: Revolutionizing Drug Delivery and Tissue Engineering for Advanced Therapeutic Applications
Authors: Mohammad Hamed Asosheh
Abstract:
The development of nanobiomaterials has opened new avenues in the field of biomedical engineering, offering unparalleled possibilities for advanced therapeutic applications. This study explores the synthesis and characterization of a distinct class of nanobiomaterials designed to enhance drug delivery systems and support tissue engineering. By integrating biodegradable polymers with bioactive nanoparticles, we have engineered a multifunctional platform that ensures controlled drug release, targeted delivery, and improved biocompatibility. Our findings demonstrate that these nanobiomaterials not only exhibit excellent mechanical properties but also promote cell proliferation and differentiation, making them ideal candidates for regenerative medicine. Furthermore, in vitro and in vivo assessments reveal that the engineered materials significantly reduce cytotoxicity while enhancing the therapeutic efficacy of encapsulated drugs. This research presents a promising approach to addressing current challenges in drug delivery and tissue regeneration, with the potential to revolutionize the treatment of chronic diseases and injury repair. Future work will focus on optimizing the material composition for specific clinical applications and conducting large-scale studies to evaluate long-term safety and effectiveness.Keywords: nanobiomaterials, drug delivery systems, therapeutic efficacy, bioactive nanoparticles
Procedia PDF Downloads 362677 Comparison between Effects of Free Curcumin and Curcumin Loaded NIPAAm-MAA Nanoparticles on Telomerase and Pinx1 Gene Expression in Lung Cancer Cells
Authors: Y. Pilehvar-Soltanahmadi, F. Badrzadeh, N. Zarghami, S. Jalilzadeh-Tabrizi, R. Zamani
Abstract:
Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. The results showed that curcumin loaded NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be the good carrier for such kinds of hydrophobic agent.Keywords: curcumin, NIPAAm-MAA, PinX1, telomerase, lung cancer cells
Procedia PDF Downloads 3052676 Heavy Metal Concentrations in Sediments of Sta. Maria River, Laguna
Authors: Francis Angelo A. Sta. Ana
Abstract:
Heavy metal pollutants are a major environmental concern in built-up areas in the Philippines. It causes negative effects on aquatic organisms and human health. Heavy metals concentrations of chromium, mercury, lead, copper, arsenic, zinc, cadmium, and nickel were investigated in Sta. Maria river, in Laguna. A total of 16 sediment samples were collected from the river at four stations. Atomic absorption spectroscopy (AAS) was used for element detection. It is found that copper is associated with chromium based on statistical analysis using principal component analysis (PCA). Conduct of Sediment Quality Guideline (SQG) revealed that chromium has high toxicity due to values higher than Sediment Quality Guidelines Probable Effect Level (SQG’s PEL). Copper, Nickel, and Pb fall on average toxicity while others are below PEL and effect range low (ERL).Keywords: heavy metals, pollutants, sediment quality guidelines, atomic absorption spectroscopy
Procedia PDF Downloads 1542675 In situ Growth of ZIF-8 on TEMPO-Oxidized Cellulose Nanofibril Film and Coated with Pectin for pH and Enzyme Dual-Responsive Controlled Release Active Packaging
Authors: Tiantian Min, Chuanxiang Cheng, Jin Yue
Abstract:
The growth and reproduction of microorganisms in food packaging can cause food decay and foodborne diseases, which pose a serious threat to the health of consumers and even cause serious economic losses. Active food packaging containing antibacterial bioactive compounds is a promising strategy for extending the shelf life of products and maintaining the food quality, as well as reducing the food waste. However, most active packaging can only act as slow-release effect for antimicrobials, which causes the release rate of antimicrobials not match the growth rate of microorganisms. Stimuli-responsive active packaging materials based on biopolymeric substrates and bioactive substances that respond to some biological and non-biological trigger factors provide more opportunities for fresh food preservation. The biological stimuli factors such as relative humidity, pH and enzyme existed in the exudate secreted by microorganisms have been expected to design food packaging materials. These stimuli-responsive materials achieved accurate release or delivery of bioactive substances at specific time and appropriate dose. Recently, metal-organic-frameworks (MOFs) nanoparticles become attractive carriers to enhance the efficiency of bioactive compounds or drugs. Cellulose nanofibrils have been widely applied for film substrates due to their biodegradability and biocompatibility. The abundant hydroxyl groups in cellulose can be oxidized to carboxyl groups by TEMPO, making it easier to anchoring MOFs and to be further modification. In this study, a pH and enzyme dual-responsive CAR@ZIF-8/TOCNF/PE film was fabricated by in-situ growth of ZIF-8 nanoparticles onto TEMPO-oxidized cellulose (TOCNF) film and further coated with pectin (PE) for stabilization and controlled release of carvacrol (CAR). The enzyme triggered release of CAR was achieved owing to the degradation of pectin by pectinase secreted by microorganisms. Similarly, the pH-responsive release of CAR was attributed to the unique skeleton degradation of ZIF-8, further accelerating the release of CAR from the topological structure of ZIF-8. The composite film performed excellent crystallinity and adsorb ability confirmed by X-ray diffraction and BET analysis, and the inhibition efficiency against Escherichia coli, Staphylococcus aureus and Aspergillus niger reached more than 99%. The composite film was capable of releasing CAR when exposure to dose-dependent enzyme (0.1, 0.2, and 0.3 mg/mL) and acidic condition (pH = 5). When inoculated 10 μL of Aspergillus niger spore suspension on the equatorial position of mango and raspberries, this composite film acted as packaging pads effectively inhibited the mycelial growth and prolonged the shelf life of mango and raspberries to 7 days. Such MOF-TOCNF based film provided a targeted, controlled and sustained release of bioactive compounds for long-term antibacterial activity and preservation effect, which can also avoid the cross-contamination of fruits.Keywords: active food packaging, controlled release, fruit preservation, in-situ growth, stimuli-responsive
Procedia PDF Downloads 692674 Mitigating Nitrous Oxide Production from Nitritation/Denitritation: Treatment of Centrate from Pig Manure Co-Digestion as a Model
Authors: Lai Peng, Cristina Pintucci, Dries Seuntjens, José Carvajal-Arroyo, Siegfried Vlaeminck
Abstract:
Economic incentives drive the implementation of short-cut nitrogen removal processes such as nitritation/denitritation (Nit/DNit) to manage nitrogen in waste streams devoid of biodegradable organic carbon. However, as any biological nitrogen removal process, the potent greenhouse gas nitrous oxide (N2O) could be emitted from Nit/DNit. Challenges remain in understanding the fundamental mechanisms and development of engineered mitigation strategies for N2O production. To provide answers, this work focuses on manure as a model, the biggest wasted nitrogen mass flow through our economies. A sequencing batch reactor (SBR; 4.5 L) was used treating the centrate (centrifuge supernatant; 2.0 ± 0.11 g N/L of ammonium) from an anaerobic digester processing mainly pig manure, supplemented with a co-substrate. Glycerin was used as external carbon source, a by-product of vegetable oil. Out-selection of nitrite oxidizing bacteria (NOB) was targeted using a combination of low dissolved oxygen (DO) levels (down to 0.5 mg O2/L), high temperature (35ºC) and relatively high free ammonia (FA) (initially 10 mg NH3-N/L). After reaching steady state, the process was able to remove 100% of ammonium with minimum nitrite and nitrate in the effluent, at a reasonably high nitrogen loading rate (0.4 g N/L/d). Substantial N2O emissions (over 15% of the nitrogen loading) were observed at the baseline operational condition, which were even increased under nitrite accumulation and a low organic carbon to nitrogen ratio. Yet, higher DO (~2.2 mg O2/L) lowered aerobic N2O emissions and weakened the dependency of N2O on nitrite concentration, suggesting a shift of N2O production pathway at elevated DO levels. Limiting the greenhouse gas emissions (environmental protection) from such a system could be substantially minimized by increasing the external carbon dosage (a cost factor), but also through the implementation of an intermittent aeration and feeding strategy. Promising steps forward have been presented in this abstract, yet at the conference the insights of ongoing experiments will also be shared.Keywords: mitigation, nitrous oxide, nitritation/denitritation, pig manure
Procedia PDF Downloads 2522673 Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria
Authors: Qunying Yuan, Manjula Bomma, Adrian Rhoden, Zhigang Xiao
Abstract:
Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance.Keywords: antimicrobial, food-borne bacteria, nanoparticles, selenium
Procedia PDF Downloads 982672 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria
Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka
Abstract:
The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between < 0.1% salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54 mg/kg while copper, nickel, lead and vanadium were <0.5 mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.Keywords: heavy metal, Qua Iboe River estuary, seasonal variations, Sediment
Procedia PDF Downloads 3752671 Structural and Magnetic Properties of Calcium Mixed Ferrites Prepared by Co-Precipitation Method
Authors: Sijo S. Thomas, S. Hridya, Manoj Mohan, Bibin Jacob, Hysen Thomas
Abstract:
Ferrites are iron based oxides with technologically significant magnetic properties and have widespread applications in medicine, technology, and industry. There has been a growing interest in the study of magnetic, electrical and structural properties of mixed ferrites. In the present work, structural and magnetic properties of Nickel and Calcium substituted Fe₃O₄ nanoparticles were investigated. NiₓCa₁₋ₓFe₂O₄ nanoparticles (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by chemical co-precipitation method and the samples were subsequently sintered at 900°C. The magnetic and structural properties of NiₓCa₁₋ₓFe₂O₄ were investigated using Vibrating Sample Magnetometer and X-Ray diffraction. The XRD results revealed that the synthesized particles have nanometer size and it varies from 46-72 nm as the calcium concentration diminishes. The variation is explained based on the increase in the reaction rate with Ni concentration which favors the formation of ultrafine particles of mixed ferrites. VSM results show pure CaFe₂O₄ exhibit paramagnetic behavior with low saturation value. As the concentration of Ca decreases, a transition occurs from paramagnetic state to ferromagnetic state. When the concentration of Ni becomes dominant, magnetic saturation, coercivity, and retentivity become high, indicating near ferromagnetic behavior of the compound.Keywords: co-precipitation, ferrites, magnetic behavior, structure
Procedia PDF Downloads 2512670 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection
Authors: Md. Abdul Aziz
Abstract:
Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor
Procedia PDF Downloads 1372669 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice
Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo
Abstract:
In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide
Procedia PDF Downloads 2522668 The Aminoguanidine Reduced NO Synthase Activity and Infiltration of Macrophages in Inflammation Induced by LPS in Rats
Authors: Hakim Chayeb
Abstract:
Macrophages (Mo) play an essential role in host defense against pathogens. These inflammatory cells contain a large group of inducible enzymes such as NO synthase (NOS). This study was conducted to characterize experimentally induced inflammation in vivo by lipopolysaccharides (LPS). LPS is an essential component of the outer membrane of Gram-negative bacteria and a potent inducer of macrophage. Except control rats, all rats received different doses of LPS intra-peritoneally. The involvement of inducible NO synthase (iNOS) and constitutive (cNOS ) in the modulation of the inflammatory response was studied by treating the rats with L-NAME (non-selective NOS inhibitor) or aminoguanidine (AG inhibitor of iNOS). Inhibitors were injected 24 hours before LPS administration. The results showed that esterase activity (a marker of macrophage infiltration) which is induced by LPS is reduced by AG, was potentiated by treatment with L-NAME in tissue homogenates of the liver, kidney and spleen. Meanwhile, the concentrations of nitric oxide (NO) induced by LPS were reduced with AG and are completely inhibited with L-NAME in the tissues studied. NO concentrations and plasma transaminase levels have undergone remarkable increases in rats treated with LPS alone. However, the AG significantly reduced these rates. Our results highlighted the role of NO synthase inhibitors in reducing of inflammatory responses that characterize many infectious diseases.Keywords: aminoguanidine, esterase, LPS, L-NAME, macrophage, nitric oxide
Procedia PDF Downloads 2642667 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.Keywords: nanofluid, heat transfer oil, mixed convection, inclined tube, laminar flow
Procedia PDF Downloads 2592666 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter
Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto
Abstract:
The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution
Procedia PDF Downloads 3812665 Interaction of Metals with Non-Conventional Solvents
Authors: Evgeny E. Tereshatov, C. M. Folden
Abstract:
Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption
Procedia PDF Downloads 1082664 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters. After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates
Procedia PDF Downloads 4002663 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid
Procedia PDF Downloads 4212662 Weakly Non-Linear Stability Analysis of Newtonian Liquids and Nanoliquids in Shallow, Square and Tall High-Porosity Enclosures
Authors: Pradeep G. Siddheshwar, K. M. Lakshmi
Abstract:
The present study deals with weakly non-linear stability analysis of Rayleigh-Benard-Brinkman convection in nanoliquid-saturated porous enclosures. The modified-Buongiorno-Brinkman model (MBBM) is used for the conservation of linear momentum in a nanoliquid-saturated-porous medium under the assumption of Boussinesq approximation. Thermal equilibrium is imposed between the base liquid and the nanoparticles. The thermophysical properties of nanoliquid are modeled using phenomenological laws and mixture theory. The fifth-order Lorenz model is derived for the problem and is then reduced to the first-order Ginzburg-Landau equation (GLE) using the multi-scale method. The analytical solution of the GLE for the amplitude is then used to quantify the heat transport in closed form, in terms of the Nusselt number. It is found that addition of dilute concentration of nanoparticles significantly enhances the heat transport and the dominant reason for the same is the high thermal conductivity of the nanoliquid in comparison to that of the base liquid. This aspect of nanoliquids helps in speedy removal of heat. The porous medium serves the purpose of retainment of energy in the system due to its low thermal conductivity. The present model helps in making a unified study for obtaining the results for base liquid, nanoliquid, base liquid-saturated porous medium and nanoliquid-saturated porous medium. Three different types of enclosures are considered for the study by taking different values of aspect ratio, and it is observed that heat transport in tall porous enclosure is maximum while that of shallow is the least. Detailed discussion is also made on estimating heat transport for different volume fractions of nanoparticles. Results of single-phase model are shown to be a limiting case of the present study. The study is made for three boundary combinations, viz., free-free, rigid-rigid and rigid-free.Keywords: Boungiorno model, Ginzburg-Landau equation, Lorenz equations, porous medium
Procedia PDF Downloads 3242661 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments
Authors: Fani Sakellariadou, Danae Antivachis
Abstract:
Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution
Procedia PDF Downloads 1622660 Growth of Metal Oxide (Tio2/Ag) Thin Films Sputtered by Hipims Effective in Bacterial Inactivation: Plasma Chemistry and Energetic
Authors: O. Baghriche, A. Zertal, C. Pulgarin, J. Kiwi, R. Sanjines
Abstract:
High-Power Impulse Magnetron Sputtering (HIPIMS) is a technology that belongs to the field of Ionized PVD of thin films. This study shows the first complete report on ultrathin TiO2/Ag nano-particulate films sputtered by highly ionized pulsed plasma magnetron sputtering (HIPIMS) leading to fast bacterial loss of viability. The Ag and the TiO2/Ag sputtered films induced complete Escherichia coli inactivation in the dark, which was not observed in the case of TiO2. When Ag was present, the bacterial inactivation was accelerated under low intensity solar simulated light and this has implications for a potential for a practical technology. The design, preparation, testing and surface characterization of these innovative films are described in this study. The HIPIMS sputtered composite films present an appreciable savings in metals compared to films obtained by conventional sputtering methods. HIPIMS sputtering induces a strong interaction with the rugous polyester 3-D structure due to the higher fraction of the Ag-ions (M+) attained in the magnetron chamber. The immiscibility of Ag and TiO2 in the TiO2/Ag films is shown by High Angular Dark Field (HAADF) microscopy. The ionization degree of the film forming species is significantly increased and film growth is assisted by an intense ion flux. Reports have revealed the significant enhancement of the film properties as the HIPIMS technology is used. However, a decrease of the deposition rate, as compared to the conventional DC magnetron sputtering Pulsed (DCMSP) process is commonly observed during HIPIMS.Keywords: E. coli, HIPIMS, inactivation bacterial, sputtering
Procedia PDF Downloads 3032659 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid
Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham
Abstract:
The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability
Procedia PDF Downloads 4622658 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 1382657 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications
Authors: Wadha Alqahtani
Abstract:
In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer
Procedia PDF Downloads 1202656 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy
Authors: G. Kaur, A. P. Kulkarni, S. Giddey
Abstract:
Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy
Procedia PDF Downloads 2422655 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density
Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita
Abstract:
Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite
Procedia PDF Downloads 108