Search results for: medication error
410 Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin
Authors: Kechnit Djamel, Ammarri Abdelhadi, Raphael Tshimang, Mark Trrig
Abstract:
One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM.Keywords: discharge monitoring, navigation, MODIS, empiric, ADCP, Congo River
Procedia PDF Downloads 92409 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 144408 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders
Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva
Abstract:
Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.
Procedia PDF Downloads 80407 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 88406 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey
Procedia PDF Downloads 165405 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 423404 Assessment of the Impact of the Application of Kinesiology Taping on Joint Position Sense in Knee Joint
Authors: Anna Słupik, Patryk Wąsowski, Anna Mosiołek, Dariusz Białoszewski
Abstract:
Introduction: Kinesiology Taping is one of the most popular techniques used for treatment and supporting physiological processes in sports medicine and physiotherapy. Often it is used to sensorimotor skills of lower limbs by athletes. The aim of the study was to determine the effect of the application of muscle Kinesiology Taping to feel the position setting in motion the joint active. Material and methods: The study involved 50 healthy people between 18 and 30 years of age, 30 men and 20 women (mean age 23.24 years). The participants were divided into two groups. The study group was qualified for Kinesiology Taping application (muscle application, type Y, for quadriceps femoris muscle), while the remaining people used the application made of plaster (placebo group). Testing was performed prior to applying taping, with the applied application (after 30 minutes), then 24 hours after wearing, and after removing the tape. Each evaluated joint position sense - Error of Active Reproduction of Joint Position. Results: The survey revealed no significant differences in measurement between the study group and the placebo group (p> 0.05). No significant differences in time taking into account all four measurements in the group with the applied CT application, which was supported by pairs (p> 0.05). Also in the placebo group showed no significant differences over time (p> 0.05). There was no significant difference between the errors committed in the direction of flexion and extension. Conclusions: 1. Application muscle Kinesiology Taping had no significant effect on the knee joint proprioception. Its use in order to improve sensorimotor seems therefore unjustified. 2. There are no differences between applications Kinesiology Taping and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous and study group.Keywords: joint position sense, kinesiology taping, knee joint, proprioception
Procedia PDF Downloads 405403 Macroeconomic Policy Coordination and Economic Growth Uncertainty in Nigeria
Authors: Ephraim Ugwu, Christopher Ehinomen
Abstract:
Despite efforts by the Nigerian government to harmonize the macroeconomic policy implementations by establishing various committees to resolve disputes between the fiscal and monetary authorities, it is still evident that the federal government had continued its expansionary policy by increasing spending, thus creating huge budget deficit. This study evaluates the effect of macroeconomic policy coordination on economic growth uncertainty in Nigeria from 1980 to 2020. Employing the Auto regressive distributed lag (ARDL) bound testing procedures, the empirical results shows that the error correction term, ECM(-1), indicates a negative sign and is significant statistically with the t-statistic value of (-5.612882 ). Therefore, the gap between long run equilibrium value and the actual value of the dependent variable is corrected with speed of adjustment equal to 77% yearly. The long run coefficient results showed that the estimated coefficients of the intercept term indicates that other things remains the same (ceteris paribus), the economics growth uncertainty will continue reduce by 7.32%. The coefficient of the fiscal policy variable, PUBEXP, indicates a positive sign and significant statistically. This implies that as the government expenditure increases by 1%, economic growth uncertainty will increase by 1.67%. The coefficient of monetary policy variable MS also indicates a positive sign and insignificant statistically. The coefficients of merchandise trade variable, TRADE and exchange rate EXR show negative signs and significant statistically. This indicate that as the country’s merchandise trade and the rate of exchange increases by 1%, the economic growth uncertainty reduces by 0.38% and 0.06%, respectively. This study, therefore, advocate for proper coordination of monetary, fiscal and exchange rate policies in order to actualize the goal of achieving a stable economic growth.Keywords: macroeconomic, policy coordination, growth uncertainty, ARDL, Nigeria
Procedia PDF Downloads 133402 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training
Authors: Biki Sarmah, Priyanko Raj Mudiar
Abstract:
In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator
Procedia PDF Downloads 167401 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency
Authors: Haruo Okabayashi
Abstract:
Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.Keywords: anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE
Procedia PDF Downloads 239400 Case Report: Treatment Resistant Schizophrenia in an Immigrant Adolescent
Authors: Omaymah Al-Otoom, Rajesh Mehta
Abstract:
Introduction: Migration is an established risk factor in the development of schizophrenia and other forms of psychosis. The exposure to different social adversities, including social isolation, discrimination, and economic stress, is thought to contribute to elevated rates of psychosis in immigrants and their children. We present a case of resistant schizophrenia in an immigrant adolescent. Case: The patient is a 15-year-old male immigrant. In October 2021, the patient was admitted for irritability, suicidal ideations, and hallucinations. He was treated with Fluoxetine 10 mg daily for irritability. In November 2021, he presented with similar manifestations. Fluoxetine was discontinued, and Risperidone 1 mg at bedtime was started for psychotic symptoms. In March 2022, he presented with commanding auditory hallucinations (voices telling him that people were going to kill his father). Risperidone was gradually increased to 2.5 mg twice daily for hallucinations. The outpatient provider discontinued Risperidone and started Olanzapine 7.5 mg and Lurasidone 40 mg daily. In August 2022, he presented with worsening paranoia due to medication non-adherence. The patient had limited improvement on medications. In October 2022, the patient presented to the ED for visual hallucinations and aggression towards the family. His medications were Olanzapine 10 mg daily, Lurasidone 60 mg daily, and Haloperidol 2.5 mg twice daily. In the ED, he received multiple as-needed medications and was placed in seclusion for his aggressive behavior. The patient showed a positive response to a higher dose of Olanzapine and decreased dose of Lurasidone. The patient was discharged home in stable condition. Two days after discharge, he was brought for bizarre behavior, visual hallucinations, and homicidal ideations at school. Due to concerns for potential antipsychotic side effects and poor response, Lurasidone and Olanzapine were discontinued, and he was discharged home on Haloperidol 5 mg in the morning and 15 mg in the evening. Clozapine treatment was recommended on an outpatient basis. He has no family history of psychotic disorders. He has no history of substance use. A medical workup was done, the electroencephalogram was normal, and the urine toxicology was negative. Discussion: Our patient was on three antipsychotics at some point with no improvement in his psychotic symptoms, which qualifies as treatment-resistant schizophrenia (TRP). It is well recognized that migrants are at higher risk of different psychiatric disorders, including posttraumatic stress disorder, affective disorders, schizophrenia, and psychosis. This is thought to be related to higher exposure to traumatic life events compared to the general population. In addition, migrants are more likely to experience poverty, separation from family members, and discrimination which could contribute to mental health issues. In one study, they found that people who migrated before the age of 18 had twice the risk of psychotic disorders compared to the native-born population. It is unclear whether migration increases the risk of treatment resistance. In a Canadian study, neither ethnicity nor migrant status was associated with treatment resistance; however, this study was limited by its small sample size. There is a need to implement psychiatric prevention strategies and outreach programs through research to mitigate the risk of mental health disorders among immigrants.Keywords: psychosis, immigrant, adolescent, treatment resistant schizophrenia
Procedia PDF Downloads 118399 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter
Authors: Van-Thanh Ho, Jaiyoung Ryu
Abstract:
In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model
Procedia PDF Downloads 100398 Experience in Caring for a Patient with Terminal Aortic Dissection of Lung Cancer and Paralysis of the Lower Limbs after Surgery
Authors: Pei-Shan Liang
Abstract:
Objective: This article explores the care experience of a terminal lung cancer patient who developed lower limb paralysis after surgery for aortic dissection. The patient, diagnosed with aortic dissection during chemotherapy for lung cancer, faced post-surgical lower limb paralysis, leading to feelings of helplessness and hopelessness as they approached death with reduced mobility. Methods: The nursing period was from July 19 to July 27, during which the author, alongside the intensive care team and palliative care specialists, conducted a comprehensive assessment through observation, direct care, conversations, physical assessments, and medical record review. Gordon's eleven functional health patterns were used for a holistic evaluation, identifying four nursing health issues: "pain related to terminal lung cancer and invasive procedures," "decreased cardiac tissue perfusion due to hemodynamic instability," "impaired physical mobility related to lower limb paralysis," and "hopelessness due to the unpredictable prognosis of terminal lung cancer." Results: The medical team initially focused on symptom relief, administering Morphine 5mg in 0.9% N/S 50ml IVD q6h for pain management and continuing chemotherapy as prescribed. Open communication was employed to address the patient's physical, psychological, and spiritual concerns. Non-pharmacological interventions, including listening, caring, companionship, opioid medication, and distraction techniques like comfortable positioning and warm foot baths, were used to alleviate pain, reducing the pain score to 3 on the numeric rating scale and easing respiratory discomfort. The palliative care team was also involved, guiding the patient and family through the "Four Paths of Life," helping the patient achieve a good end-of-life experience and the family to experience a peaceful life. This process also served to promote the concept of palliative care, enabling more patients and families to receive high-quality and dignified care. The patient was encouraged to express inner anxiety through drawing or writing, which helped reduce the hopelessness caused by psychological distress and uncertainty about the disease's prognosis, as assessed by the Hospital Anxiety and Depression Scale, reaching a level of mild anxiety but acceptable without affecting sleep. Conclusion: What left a deep impression during the care process was the need for intensive care providers to consider the patient's psychological state, not just their physical condition, when the patient's situation changes. Family support and involvement often provide the greatest solace for the patient, emphasizing the importance of comfort and dignity. This includes oral care to maintain cleanliness and comfort, frequent repositioning to alleviate pressure and discomfort, and timely removal of invasive devices and unnecessary medications to avoid unnecessary suffering. The nursing process should also address the patient's psychological needs, offering comfort and support to ensure that they can face the end of life with peace and dignity.Keywords: intensive care, lung cancer, aortic dissection, lower limb paralysis
Procedia PDF Downloads 30397 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer
Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan
Abstract:
Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.Keywords: cervical cancer, early detection, digital Pathology, screening
Procedia PDF Downloads 178396 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study
Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki
Abstract:
Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxietyKeywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation
Procedia PDF Downloads 153395 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria
Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi
Abstract:
The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.Keywords: CRU, climate change, precipitation, SPI, temperature
Procedia PDF Downloads 92394 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach
Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam
Abstract:
Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment
Procedia PDF Downloads 85393 The Effect of Foundation on the Earth Fill Dam Settlement
Authors: Masoud Ghaemi, Mohammadjafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh
Abstract:
Careful monitoring in the earth dams to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually, the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility of placing the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and deformable alluvial foundation that leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by the alluvial foundation. To achieve this goal, the settlement of dams was simulated by using the finite difference method with FLAC3D software, and then the modeling results were compared with the reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and CURVE FITTING toolbox, new criteria for the settlement based on elasticity modulus, cohesion, friction angle, the density of earth dam and the alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings, and the error rate in reading IS instrument can be greatly reduced.Keywords: earth-fill dam, foundation, settlement, finite difference, MATLAB, curve fitting
Procedia PDF Downloads 198392 Addressing Public Concerns about Radiation Impacts by Looking Back in Nuclear Accidents Worldwide
Authors: Du Kim, Nelson Baro
Abstract:
According to a report of International Atomic Energy Agency (IAEA), there are approximately 437 nuclear power stations are in operation in the present around the world in order to meet increasing energy demands. Indeed, nearly, a third of the world’s energy demands are met through nuclear power because it is one of the most efficient and long-lasting sources of energy. However, there are also consequences when a major event takes place at a nuclear power station. Over the past years, a few major nuclear accidents have occurred around the world. According to a report of International Nuclear and Radiological Event Scale (INES), there are six nuclear accidents that are considered to be high level (risk) of the events: Fukushima Dai-chi (Level 7), Chernobyl (Level 7), Three Mile Island (Level 5), Windscale (Level 5), Kyshtym (Level 6) and Chalk River (Level 5). Today, many people still have doubt about using nuclear power. There is growing number of people who are against nuclear power after the serious accident occurred at the Fukushima Dai-chi nuclear power plant in Japan. In other words, there are public concerns about radiation impacts which emphasize Linear-No-Threshold (LNT) Issues, Radiation Health Effects, Radiation Protection and Social Impacts. This paper will address those keywords by looking back at the history of these major nuclear accidents worldwide, based on INES. This paper concludes that all major mistake from nuclear accidents are preventable due to the fact that most of them are caused by human error. In other words, the human factor has played a huge role in the malfunction and occurrence of most of those events. The correct handle of a crisis is determined, by having a good radiation protection program in place, it’s what has a big impact on society and determines how acceptable people are of nuclear.Keywords: linear-no-threshold (LNT) issues, radiation health effects, radiation protection, social impacts
Procedia PDF Downloads 244391 A Multidisciplinary Team Approach for Limb Salvage in a Rare Case of Pyoderma Gangrenosum in a Significant Circumferential Lower Extremity Wound Complicated by Diabetes and End-stage Renal Disease
Authors: Jenee Gooden, Kevin Vasquez-monterroso, Lady Paula Dejesus, Sandra Wainwright, Daniel Kim, Mackenzie Walker
Abstract:
Introduction: Pyoderma gangrenosum (PG) is a rare, rapidly progressive, neutrophilic ulcerative colitis condition with an incidence of 3 to 10 cases per year ¹ ². Due to the similar appearance, PG is often misdiagnosed as a diabetic ulcer in diabetic patients. Though they may clinically appear similar in appearance, the treatment protocol and diagnostic criteria differ. Also, end-stage renal disease (ESRD) is often a condition seen in diabetic patients, which can have a significant impact on wound healing due to the wide range of uremic toxins³. This case study demonstrates a multidisciplinary team and multimodal treatment approach by podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine for an uncontrolled diabetic with pyoderma gangrenosum of a significant circumferential wound, covering almost the entire right lower extremity. Methods:56 y.o male presents with multiple PG ulcerations, including the chest, right posterior lower extremity and sacrum. All ulcerations were previously managed by the same wound care specialist. His chief complaint was worsening PG ulcerations accompanied by a fever of 103 °F . This case study focuses on the wound to his RLE. Past medical history significant for diabetes mellitus type 2 with hemoglobin A1c of 10% and end stage renal disease (ESRD) on hemodialysis. A multidisciplinary team approach by podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine was successfully used to perform right lower extremity limb salvage. The patient was managed by rheumatology for the continuation of prior medication, as well as the mutual agreement with wound care for the addition of dapsone. A coronary CT angiogram was performed by interventional cardiology, but no significant disease was noted, and no further vascular workup was necessary. Multiple surgical sharp wide excisional debridements with application of allografts and split thickness skin grafts for the circumferential ulceration that encompassed almost the entire right lower extremity were performed by both podiatric surgery and general surgery. Wound cultures and soft tissue biopsies were performed, and infectious disease managed antibiotic therapy. Hyperbaric oxygen therapy and wound vac therapy by wound care were also completed as adjunct management. Results: Prevention of leg amputation by limb salvage of the RLE was accomplished by a multidisciplinary team approach, with the wound size decreasing over a total of 29 weeks from 600 cm² to 12.0 x 3.5 x 0.2 cm. Our multidisciplinary team included podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine. Discussion: Wound healing, in general, can have its challenges, and those challenges are only magnified when accompanied by multiple systemic illnesses. Though the negative impact of diabetes on wound healing is well known, the compound impact of being a diabetic with ESRD and having pyoderma gangrenosum is not. This case demonstrates the necessity for a multidisciplinary team approach with a wide array of treatment modalities to optimize wound healing and perform limb salvage with prevention of lower extremity amputation.Keywords: diabetes, podiatry, pyoderma gangrenosum, end stage renal disease
Procedia PDF Downloads 75390 Secure Texting Used in a Post-Acute Pediatric Skilled Nursing Inpatient Setting: A Multidisciplinary Care Team Driven Communication System with Alarm and Alert Notification Management
Authors: Bency Ann Massinello, Nancy Day, Janet Fellini
Abstract:
Background: The use of an appropriate mode of communication among the multidisciplinary care team members regarding coordination of care is an extremely complicated yet important patient safety initiative. Effective communication among the team members(nursing staff, medical staff, respiratory therapists, rehabilitation therapists, patient-family services team…) become essential to develop a culture of trust and collaboration to deliver the highest quality care to patients are their families. The inpatient post-acute pediatrics, where children and their caregivers come for continuity of care, is no exceptions to the increasing use of text messages as a means to communication among clinicians. One such platform is the Vocera Communications (Vocera Smart Mobile App called Vocera Edge) allows the teams to use the application and share sensitive patient information through an encrypted platform using IOS company provided shared and assigned mobile devices. Objective: This paper discusses the quality initiative of implementing the transition from Vocera Smartbage to Vocera Edge Mobile App, technology advantage, use case expansion, and lessons learned about a secure alternative modality that allows sending and receiving secure text messages in a pediatric post-acute setting using an IOS device. This implementation process included all direct care staff, ancillary teams, and administrative teams on the clinical units. Methods: Our institution launched this transition from voice prompted hands-free Vocera Smartbage to Vocera Edge mobile based app for secure care team texting using a big bang approach during the first PDSA cycle. The pre and post implementation data was gathered using a qualitative survey of about 500 multidisciplinary team members to determine the ease of use of the application and its efficiency in care coordination. The technology was further expanded in its use by implementing clinical alerts and alarms notification using middleware integration with patient monitoring (Masimo) and life safety (Nurse call) systems. Additional use of the smart mobile iPhone use include pushing out apps like Lexicomp and Up to Date to have it readily available for users for evident-based practice in medication and disease management. Results: Successful implementation of the communication system in a shared and assigned model with all of the multidisciplinary teams in our pediatric post-acute setting. In just a 3-monthperiod post implementation, we noticed a 14% increase from 7,993 messages in 6 days in December 2020 to 9,116messages in March 2021. This confirmed that all clinical and non-clinical teams were using this mode of communication for coordinating the care for their patients. System generated data analytics used in addition to the pre and post implementation staff survey for process evaluation. Conclusion: A secure texting option using a mobile device is a safe and efficient mode for care team communication and collaboration using technology in real time. This allows for the settings like post-acute pediatric care areas to be in line with the widespread use of mobile apps and technology in our mainstream healthcare.Keywords: nursing informatics, mobile secure texting, multidisciplinary communication, pediatrics post acute care
Procedia PDF Downloads 196389 Hedonic Price Analysis of Consumer Preference for Musa spp in Northern Nigeria
Authors: Yakubu Suleiman, S. A. Musa
Abstract:
The research was conducted to determine the physical characteristics of banana fruits that influenced consumer preferences for the fruit in Northern Nigeria. Socio-economic characteristics of the respondents were also identified. Simple descriptive statistics and Hedonic prices model were used to analyze the data collected for socio-economic and consumer preference respectively with the aid of 1000 structured questionnaires. The result revealed the value of R2 to be 0.633, meaning that, 63.3% of the variation in the banana price was brought about by the explanatory variables included in the model and the variables are: colour, size, degree of ripeness, softness, surface blemish, cleanliness of the fruits, weight, length, and cluster size of fruits. However, the remaining 36.7% could be attributed to the error term or random disturbance in the model. It could also be seen from the calculated result that the intercept was 1886.5 and was statistically significant (P < 0.01), meaning that about N1886.5 worth of banana fruits could be bought by consumers without considering the variables of banana included in the model. Moreover, consumers showed that they have significant preference for colours, size, degree of ripeness, softness, weight, length and cluster size of banana fruits and they were tested to be significant at either P < 0.01, P < 0.05, and P < 0.1 . Moreover, the result also shows that consumers did not show significance preferences to surface blemish, cleanliness and variety of the banana fruit as all of them showed non-significance level with negative signs. Based on the findings of the research, it is hereby recommended that plant breeders and research institutes should concentrate on the production of banana fruits that have those physical characteristics that were found to be statistically significance like cluster size, degree of ripeness,’ softness, length, size, and skin colour.Keywords: analysis, consumers, preference, variables
Procedia PDF Downloads 344388 Simulation-Based Validation of Safe Human-Robot-Collaboration
Authors: Titanilla Komenda
Abstract:
Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.Keywords: human-machine-system, human-robot-collaboration, safety, simulation
Procedia PDF Downloads 361387 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 153386 Correlation between Cephalometric Measurements and Visual Perception of Facial Profile in Skeletal Type II Patients
Authors: Choki, Supatchai Boonpratham, Suwannee Luppanapornlarp
Abstract:
The objective of this study was to find a correlation between cephalometric measurements and visual perception of facial profile in skeletal type II patients. In this study, 250 lateral cephalograms of female patients from age, 20 to 22 years were analyzed. The profile outlines of all the samples were hand traced and transformed into silhouettes by the principal investigator. Profile ratings were done by 9 orthodontists on Visual Analogue Scale from score one to ten (increasing level of convexity). 37 hard issue and soft tissue cephalometric measurements were analyzed by the principal investigator. All the measurements were repeated after 2 weeks interval for error assessment. At last, the rankings of visual perceptions were correlated with cephalometric measurements using Spearman correlation coefficient (P < 0.05). The results show that the increase in facial convexity was correlated with higher values of ANB (A point, nasion and B point), AF-BF (distance from A point to B point in mm), L1-NB (distance from lower incisor to NB line in mm), anterior maxillary alveolar height, posterior maxillary alveolar height, overjet, H angle hard tissue, H angle soft tissue and lower lip to E plane (absolute correlation values from 0.277 to 0.711). In contrast, the increase in facial convexity was correlated with lower values of Pg. to N perpendicular and Pg. to NB (mm) (absolute correlation value -0.302 and -0.294 respectively). From the soft tissue measurements, H angles had a higher correlation with visual perception than facial contour angle, nasolabial angle, and lower lip to E plane. In conclusion, the findings of this study indicated that the correlation of cephalometric measurements with visual perception was less than expected. Only 29% of cephalometric measurements had a significant correlation with visual perception. Therefore, diagnosis based solely on cephalometric analysis can result in failure to meet the patient’s esthetic expectation.Keywords: cephalometric measurements, facial profile, skeletal type II, visual perception
Procedia PDF Downloads 138385 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data
Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar
Abstract:
It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.Keywords: accuracy, exponential smoothing, forecasting, initial value
Procedia PDF Downloads 177384 Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study on the Role of Mobile Technology
Authors: Andreas Ateke Njoh, Shalom Tchokfe Ndoula, Amani Adidja, Germain Nguessan Menan, Annie Mengue, Eric Mboke, Hassan Ben Bachir, Sangwe Clovis Nchinjoh, Yauba Saidu, Laurent Cleenewerck De Kiev
Abstract:
Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in the Country. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the past five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100 000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor using new vaccines in Cameroon.Keywords: adverse events following immunization, cameroon, COVID-19 vaccines, nOPV, ODK
Procedia PDF Downloads 90383 Creating Database and Building 3D Geological Models: A Case Study on Bac Ai Pumped Storage Hydropower Project
Authors: Nguyen Chi Quang, Nguyen Duong Tri Nguyen
Abstract:
This article is the first step to research and outline the structure of the geotechnical database in the geological survey of a power project; in the context of this report creating the database that has been carried out for the Bac Ai pumped storage hydropower project. For the purpose of providing a method of organizing and storing geological and topographic survey data and experimental results in a spatial database, the RockWorks software is used to bring optimal efficiency in the process of exploiting, using, and analyzing data in service of the design work in the power engineering consulting. Three-dimensional (3D) geotechnical models are created from the survey data: such as stratigraphy, lithology, porosity, etc. The results of the 3D geotechnical model in the case of Bac Ai pumped storage hydropower project include six closely stacked stratigraphic formations by Horizons method, whereas modeling of engineering geological parameters is performed by geostatistical methods. The accuracy and reliability assessments are tested through error statistics, empirical evaluation, and expert methods. The three-dimensional model analysis allows better visualization of volumetric calculations, excavation and backfilling of the lake area, tunneling of power pipelines, and calculation of on-site construction material reserves. In general, the application of engineering geological modeling makes the design work more intuitive and comprehensive, helping construction designers better identify and offer the most optimal design solutions for the project. The database always ensures the update and synchronization, as well as enables 3D modeling of geological and topographic data to integrate with the designed data according to the building information modeling. This is also the base platform for BIM & GIS integration.Keywords: database, engineering geology, 3D Model, RockWorks, Bac Ai pumped storage hydropower project
Procedia PDF Downloads 169382 Navigating Rapids And Collecting Medical Insights: A Data Collection Of Athletes Presenting To The Medical Team At The International Canoe Federation Canoe Slalom World Championships 2023
Authors: Grace Scaplehorn, Muhammad Adeel Akhtar, Jane Gibson
Abstract:
Background: Canoe Slalom entails the skilful navigation of a carbon composite canoe or kayak through a series of 18-25 hanging gates, strategically positioned along the course, either upstream or downstream, amidst currents of whitewater rapids in natural and man-made river settings. Athletes compete individually in timed trials, competing for the fastest course time, typically around 80 to 120 seconds. In the new discipline of Kayak Cross, descents of the course are initiated by groups of four athletes freefalling simultaneously from a starting platform situated 3m above the river. Kayak Cross athletes, in contrast to Canoe Slalom, can make physical contact with suspended gates without incurring time penalties and are required to perform a kayak roll half way down the course. The Canoe Slalom World Championships were held at Lee Valley Whitewater Centre, London, from 19th to 24th September 2023. The event comprised 299 international athletes competing for 10 World Championship titles in Canoe/Kayak Slalom events (Olympic Debut Munich 1972), and the new Kayak Cross discipline (Olympic Debut Paris 2024). The inaugural appearance of Kayak Cross at the World Championships occurred in 2017, in Pau, France. There is limited literature surrounding Kayak Cross and the incidence of athlete injuries compared to traditional Canoe Slalom, hence it was felt important to undertake this review to address the perception that the event is dangerous. Aim: The study aimed to quantify and collate data collected from athletes presenting to the event medical centre. Methods: Athletes’ details were collected at initial assessments from the start of the practice period (16th–18th September) and throughout the event. Demographics such as age, sex and nationality were recorded along with presenting complaints, treatment, medication administered and outcome. Specifically, injuries were then sub-classified into body regions. The data does not include athletes who sought medical attention from their own governing body’s medical team. Results: During the 8-day period, there were 11 individual presentations to the medical centre, 3.7% of the athlete population (n=299). The mean age was 23.9 years (n=7), 6 were male (n=10). The most common presentation was minor injury (n=9), with 6 being musculoskeletal and 3 comprising skin damage, followed by insect sting/allergy (n=1) and pain relief requests (n=1). Five presentations were event-related, all being musculoskeletal injuries; 2 shoulder/arm, 1 head/neck, 1 hand/wrist and 1 other (data was not recorded). Of these injuries, the only intervention was 2 cases of 400mg Ibuprofen, which was given to both shoulder/arm injuries. Four of the 11 presentations were pre-existing injuries, which had been exacerbated due to increased intensity of practice. Two patients were advised to return for review, with 100% compliance. There were no unplanned re-presentations, and no emergency transfers to secondary care. Both the Kayak Cross and Canoe Slalom competitions resulted in 1 new event-related athlete presentation each. Conclusion: The event resulted in a negligible incidence of presentations at the medical centre, for both Kayak Cross and Canoe Slalom. This data holds significance in informing risk assessments and medical protocols necessary for the organisation of canoe slalom events.Keywords: canoe slalom, kayak cross, athlete injuries, event injuries
Procedia PDF Downloads 57381 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 137