Search results for: stored grain insect pests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1892

Search results for: stored grain insect pests

62 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD

Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer

Abstract:

Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.

Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film

Procedia PDF Downloads 279
61 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 270
60 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 49
59 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 203
58 Legume Grain as Alternative to Soya Bean Meal in Small Ruminant Diets

Authors: Abidi Sourour, Ben Salem Hichem, Zoghlemi Aziza, Mezni Mejid, Nasri Saida

Abstract:

In Tunisia, there is an urgent need to maintain food security by reversing soil degradation and improving crop and livestock productivity. Conservation Agriculture (CA) can be helpful in enhancing crop productivity and soil health. However, the demand for crop residues as animal feed are among the major constraints for the adoption of CA. Thus, the objective of this trial is to test the nutritional value of new forage mixture hays as alternative to cereal residues. Two tri-specific cereal-legume mixture were studied and compared to the classic Vetch-Oat one. They were implemented at farm level in four regions characterized by sub-humi climatic: V70-A15-T15 (Vetch70% - Oat15% -Triticale15%) installed in two sites (Zhir and safasaf), V60-A7-T33 (Vetch60% - Oat7% -Triticale33%) and V70-A30 (Vetch70%-Oat30%). Results revealed a significant variation between mixtures V70-A15-T15 installed at Safsafa, recorded the highest forage yield with 12t DM ha-1 than V60A7T33 and V70A30 installed, respectively in ksar cheikh and Fernana with 11.6 and 11.2.tMSha-1. The same mixture installed in Safsafa gave 22% less yields than the one installed in Safsafa. In fact, the month of March was dry in Z'hir. Moreover, these yields in DM can be comparable to those observed by Yucel and Avci (2009). The CP contents of the samples studied vary significantly between the mixtures (P<0.0003). V70-A15-T15 installed in Safsaf and V70A30 present higher contents of CP (respectively 14.4 and 13.7% DM) compared to the other mixtures. These contents are explained by the high proportion of vetch in the fourth mixture and by the low proportion of weeds in the second. In all cases, the hay produced from these mixtures is significantly richer in protein than that of oats in pure culture (Abdelraheem et al., 2019). The positive correlation between the CP content and the proportion of vetch explains this superior quality. The NDF and ADF contents were similar for all mixtures. These values were similar to those reported in the literature (Abidi and Benyoussef, 2019; Haj-Ayed and al., 2000). In general, the Land Equivalent Ratio (LER) was significantly greater than 1 for the vetch-oat-triticale mixture at Zhiir and Safsafa and also for the vetch-oat a at Fernana, proving that they are more productive in intercropping than in pure culture. For the Ksar Cheikh site, the LER value of the vetch-oat-triticale mixture is maintained at around 1. Proving the absence of the advantage of mixture culture compared to pure culture. This proves the massive presence of weeds interferes with the two partners of the mixture increases. The LER for the vetch-oat mixture reached its maximum in March 13 and decreases in April but remained above 1. This proves that the tutoring power of oats showed itself in a constant way until an advanced stage since the variety used is characterized by very thick stems, protecting it from the risk of lodging. These forages mixture present a promising option, a high nutritional quality that could reduce the use of concentrate and, therefore, the cost of feed. With such feed value, these mixtures allow good animal performance.

Keywords: soybean, lupine, vetch, lamb-ADG, meat

Procedia PDF Downloads 73
57 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty

Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti

Abstract:

Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.

Keywords: ADAM10, biomarkers, cognitive frailty, elderly

Procedia PDF Downloads 214
56 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks

Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry

Abstract:

Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.

Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science

Procedia PDF Downloads 293
55 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line

Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan

Abstract:

Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.

Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA

Procedia PDF Downloads 125
54 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 203
53 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 49
52 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards

Authors: José M. Carmona, Diana Puigserver, Jofre Herrero

Abstract:

Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.

Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard

Procedia PDF Downloads 139
51 The Role of Oral and Intestinal Microbiota in European Badgers

Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald

Abstract:

This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.

Keywords: communication, energetics, fitness, free-ranging animals, immunology

Procedia PDF Downloads 174
50 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 397
49 Effect of Spermidine on Physicochemical Properties of Protein Based Films

Authors: Mohammed Sabbah, Prospero Di Pierro, Raffaele Porta

Abstract:

Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers.

Keywords: edible films, glycerol, plasticizers, polyamines, spermidine

Procedia PDF Downloads 185
48 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer

Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann

Abstract:

Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.

Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare

Procedia PDF Downloads 132
47 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus

Authors: Jacques M. Berner, Lehlogonolo Maloma

Abstract:

Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.

Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds

Procedia PDF Downloads 75
46 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa

Authors: D. Mokatsanyane, J. Jansen Van Rensburg

Abstract:

This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.

Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX

Procedia PDF Downloads 159
45 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 21
44 The Lessons Learned from Managing Malignant Melanoma During COVID-19 in a Plastic Surgery Unit in Ireland

Authors: Amenah Dhannoon, Ciaran Martin Hurley, Laura Wrafter, Podraic J. Regan

Abstract:

Introduction: The COVID-19 pandemic continues to present unprecedented challenges for healthcare systems. This has resulted in the pragmatic shift in the practice of plastic surgery units worldwide. During this period, many units reported a significant fall in urgent melanoma referrals, leading to patients presenting with advanced disease requiring more extensive surgery and inferior outcomes. Our objective was to evaluate our unit's experience with both non-invasive and invasive melanoma during the COVID-19 pandemic and characterize our experience and contrast it to that experienced by our neighbors in the UK, mainland Europe and North America. Methods: a retrospective chart review was performed on all patients diagnosed with invasive and non-invasive cutaneous melanoma between March to December of 2019 (control) compared to 2020 (COVID-19 pandemic) in a single plastic surgery unit in Ireland. Patient demographics, referral source, surgical procedures, tumour characteristics, radiological findings, oncological therapies and follow-up were recorded. All data were anonymized and stored in Microsoft Excel. Results: A total of 589 patients were included in the study. Of these, 314 (53%) with invasive melanoma, compared to 275 (47%) with the non-invasive disease. Overall, more patients were diagnosed with both invasive and non-invasive melanoma in 2020 than in 2019 (p<0.05). However, significantly longer waiting times in 2020 (64 days) compared to 2019 (28 days) (p<0.05), with the majority of the referral being from GP in 2019 (83%) compared to 61% in 2020. Positive sentinel lymph node were higher in 2019 at 56% (n=28) compared to 24% (n=22) in 2020. There was no statistically significant difference in the tutor characteristics or metastasis status. Discussion: While other countries have noticed a fall in the melanoma diagnosis. Our units experienced a higher number of disease diagnoses. This can be due to multiple reasons. In Ireland, the government reached an early agreement with the private sector to continue elective surgery on an urgent basis in private hospitals. This allowed access to local anesthetic procedures and local skin cancer cases were triaged to non-COVID-19 provider centers. Our unit also adapted a fast, effective and minimal patient contact strategy for triaging skin cancer based on telemedicine. Thirdly, a skin cancer nurse specialist maintained patient follow-ups and triaging a dedicated email service. Finally, our plastic surgery service continued to maintain a virtual complex skin cancer multidisciplinary team meeting during the pandemic, ensuring local clinical governance has adhered to each clinical case. Conclusion: Our study highlights that with the prompt efficient restructuring of services, we could reserve successful management of skin cancer even in the most devastating times. It is important to reflect on the success during the pandemic and emphasize the importance of preparation for a potentially difficult future

Keywords: malignant melanoma, skin cancer, COVID-19, triage

Procedia PDF Downloads 159
43 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 145
42 Readout Development of a LGAD-based Hybrid Detector for Microdosimetry (HDM)

Authors: Pierobon Enrico, Missiaggia Marta, Castelluzzo Michele, Tommasino Francesco, Ricci Leonardo, Scifoni Emanuele, Vincezo Monaco, Boscardin Maurizio, La Tessa Chiara

Abstract:

Clinical outcomes collected over the past three decades have suggested that ion therapy has the potential to be a treatment modality superior to conventional radiation for several types of cancer, including recurrences, as well as for other diseases. Although the results have been encouraging, numerous treatment uncertainties remain a major obstacle to the full exploitation of particle radiotherapy. To overcome therapy uncertainties optimizing treatment outcome, the best possible radiation quality description is of paramount importance linking radiation physical dose to biological effects. Microdosimetry was developed as a tool to improve the description of radiation quality. By recording the energy deposition at the micrometric scale (the typical size of a cell nucleus), this approach takes into account the non-deterministic nature of atomic and nuclear processes and creates a direct link between the dose deposited by radiation and the biological effect induced. Microdosimeters measure the spectrum of lineal energy y, defined as the energy deposition in the detector divided by most probable track length travelled by radiation. The latter is provided by the so-called “Mean Chord Length” (MCL) approximation, and it is related to the detector geometry. To improve the characterization of the radiation field quality, we define a new quantity replacing the MCL with the actual particle track length inside the microdosimeter. In order to measure this new quantity, we propose a two-stage detector consisting of a commercial Tissue Equivalent Proportional Counter (TEPC) and 4 layers of Low Gain Avalanche Detectors (LGADs) strips. The TEPC detector records the energy deposition in a region equivalent to 2 um of tissue, while the LGADs are very suitable for particle tracking because of the thickness thinnable down to tens of micrometers and fast response to ionizing radiation. The concept of HDM has been investigated and validated with Monte Carlo simulations. Currently, a dedicated readout is under development. This two stages detector will require two different systems to join complementary information for each event: energy deposition in the TEPC and respective track length recorded by LGADs tracker. This challenge is being addressed by implementing SoC (System on Chip) technology, relying on Field Programmable Gated Arrays (FPGAs) based on the Zynq architecture. TEPC readout consists of three different signal amplification legs and is carried out thanks to 3 ADCs mounted on a FPGA board. LGADs activated strip signal is processed thanks to dedicated chips, and finally, the activated strip is stored relying again on FPGA-based solutions. In this work, we will provide a detailed description of HDM geometry and the SoC solutions that we are implementing for the readout.

Keywords: particle tracking, ion therapy, low gain avalanche diode, tissue equivalent proportional counter, microdosimetry

Procedia PDF Downloads 157
41 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 229
40 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 111
39 Sedimentation and Morphology of the Kura River-Deltaic System in the Southern Caucasus under Anthropogenic and Sea-Level Controls

Authors: Elmira Aliyeva, Dadash Huseynov, Robert Hoogendoorn, Salomon Kroonenberg

Abstract:

The Kura River is the major water artery in the Southern Caucasus; it is a third river in the Caspian Sea basin in terms of length and size of the catchment area, the second in terms of the water budget, and the first in the volume of sediment load. Understanding of major controls on the Kura fluvial- deltaic system is valuable for efficient management of the highly populated river basin and coastal zone. We have studied grain size of sediments accumulated in the river channels and delta and dated by 210Pb method, astrophotographs, old topographic and geological maps, and archive data. At present time sediments are supplied by the Kura River to the Caspian Sea through three distributary channels oriented north-east, south-east, and south-west. The river is dominated by the suspended load - mud, silt, very fine sand. Coarse sediments are accumulated in the distributaries, levees, point bar, and delta front. The annual suspended sediment budget in the time period 1934-1952 before construction of the Mingechavir water reservoir in 1953 in the Kura River midstream area was 36 mln.t/yr. From 1953 to 1964, the suspended load has dropped to 12 mln.t/yr. After regulation of the Kura River discharge the volume of suspended load transported via north-eastern channel reduced from 35% of the total sediment amount to 4%, and through the main south-eastern channel increased from 65% to 96% with further fall to 56% due to creation of new south-western channel in 1964. Between 1967-1976 the annual sediment budget of the Kura River reached 22,5 mln. t/yr. From 1977 to 1986, the sediment load carried by the Kura River dropped to 17,6 mln.t/yr. The historical data show that between 1860 and 1907, during relatively stable Caspian Sea level two channels - N and SE, appear to have distributed an equal amount of sediments as seen from the bilateral geometry of the delta. In the time period 1907-1929, two new channels - E and NE, appeared. The growth of three delta lobes - N, NE, and SE, and rapid progradation of the delta has occurred on the background of the Caspian Sea level rise as a result of very high sediment supply. Since 1929 the Caspian Sea level decline was followed by the progradation of the delta occurring along the SE channel. The eastern and northern channels have been silted up. The slow rate of progradation at its initial stage was caused by the artificial reduction in the sediment budget. However, the continuous sea-level fall has brought to this river bed gradient increase, high erosional rate, increase in the sediment supply, and more rapid progradation. During the subsequent sea-level rise after 1977 accompanied by the decrease in the sediment budget, the southern part of the delta has turned into a complex of small, shallow channels oriented to the south. The data demonstrate that behaviour of the Kura fluvial – deltaic system and variations in the sediment budget besides anthropogenic regulation are strongly governed by the Caspian Sea level very rapid changes.

Keywords: anthropogenic control on sediment budget, Caspian sea-level variations, Kura river sediment load, morphology of the Kura river delta, sedimentation in the Kura river delta

Procedia PDF Downloads 146
38 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 182
37 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 231
36 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean

Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin

Abstract:

Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean  standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.

Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content

Procedia PDF Downloads 247
35 Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged.

Keywords: out-of-sequence thrust, main central thrust, grain boundary migration, South Tibetan detachment system, Jakhri Thrust, Sarahan Thrust, Chaura Thrust, higher Himalaya, greater Himalayan crystalline

Procedia PDF Downloads 64
34 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 79
33 Growth Patterns of Pyrite Crystals Studied by Electron Back Scatter Diffraction (EBSD)

Authors: Kirsten Techmer, Jan-Erik Rybak, Simon Rudolph

Abstract:

Natural formed pyrites (FeS2) are frequent sulfides in sedimentary and metamorphic rocks. Growth textures of idiomorphic pyrite assemblages reflect the conditions during their formation in the geologic sequence, furtheron the local texture analyses of the growth patterns of pyrite assemblages by EBSD reveal the possibility to resolve the growth conditions during the formation of pyrite at the micron scale. The spatial resolution of local texture measurements in the Scanning Electron Microscope used can be in the nanomete scale. Orientation contrasts resulting from domains of smaller misorientations within larger pyrite crystals can be resolved as well. The electron optical studies have been carried out in a Field-Emission Scanning Electron Microscope (FEI Quanta 200) equipped with a CCD camera to study the orientation contrasts along the surfaces of pyrite. Idiomorphic cubic single crystals of pyrite, polycrystalline assemblages of pyrite, spherically grown spheres of pyrite as well as pyrite-bearing ammonites have been studied by EBSD in the Scanning Electron Microscope. Samples were chosen to show no or minor secondary deformation and an idiomorphic 3D crystal habit, so the local textures of pyrite result mainly from growth and minor from deformation. The samples studied derived from Navajun (Spain), Chalchidiki (Greece), Thüringen (Germany) and Unterkliem (Austria). Chemical analyses by EDAX show pyrite with minor inhomogeneities e.g., single crystals of galena and chalcopyrite along the grain boundaries of larger pyrite crystals. Intergrowth between marcasite and pyrite can be detected in one sample. Pyrite may form intense growth twinning lamellae on {011}. Twinning, e.g., contact twinning is abundant within the crystals studied and the individual twinning lamellaes can be resolved by EBSD. The ammonites studied show a replacement of the shale by newly formed pyrite resulting in an intense intergrowth of calcite and pyrite. EBSD measurements indicate a polycrystalline microfabric of both minerals, still reflecting primary surface structures of the ammonites e.g, the Septen. Discs of pyrite (“pyrite dollar”) as well as pyrite framboids show growth patterns comprising a typical microfabric. EBSD studies reveal an equigranular matrix in the inner part of the discs of pyrite and a fiber growth with larger misorientations in the outer regions between the individual segments. This typical microfabric derived from a formation of pyrite crystals starting at a higher nucleation rate and followed by directional crystal growth. EBSD studies show, that the growth texture of pyrite in the samples studied reveals a correlation between nucleation rate and following growth rate of the pyrites, thus leading to the characteristic crystal habits. Preferential directional growth at lower nucleation rates may lead to the formation of 3D framboids of pyrite. Crystallographic misorientations between the individual fibers are similar. In ammonites studied, primary anisotropies of the substrates like e.g., ammonitic sutures, influence the nucleation, crystal growth and habit of the newly formed pyrites along the surfaces.

Keywords: Electron Back Scatter Diffraction (EBSD), growth pattern, Fe-sulfides (pyrite), texture analyses

Procedia PDF Downloads 280